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Abstract 
As a component of a three-year cooperative effort of the Washington State Department of Ecology 
and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 
locations in southern Puget Sound were collected in 1999 to determine their relative quality based on 
measures of toxicity, chemical contamination, and benthic infaunal assemblage structure.  The survey 
encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to 
Oakland Bay, and including Hood Canal.  Toxic responses were most severe in some of the 
industrialized waterways of Tacoma’s Commencement Bay.  Other industrialized harbors in which 
sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at 
Shelton, Gig Harbor, Port Ludlow, and Port Gamble.  Based on the methods selected for this survey, 
the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey 
area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5-
38% with the cytochrome P450 HRGS assay.  Measurements of trace metals, PAHs, PCBs, 
chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated 
that 20 of the 100 samples collected had one or more chemical concentrations that exceeded 
applicable, effects-based sediment guidelines and/or Washington State standards.  Chemical 
contamination was highest in eight samples collected in or near the industrialized waterways of 
Commencement Bay.  Samples from the Thea Foss and Middle Waterways were primarily 
contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were 
contaminated with chlorinated organic hydrocarbons.  The remaining 12 samples with elevated 
chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) 
phthalate, benzoic acid, benzyl alcohol, and phenol.  The characteristics of benthic infaunal 
assemblages in south Puget Sound differed considerably among locations and habitat types 
throughout the study area.  In general, many of the small embayments and inlets throughout the study 
area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and 
dominance values, although total abundance values were very high in some cases, typically due to 
high abundance of one organism such as the polychaete Aphelochaeta sp. N1.  The majority of the 
samples collected from passages, outer embayments, and larger bodies of water tended to have 
infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values.  
Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms 
in them.  A weight-of-evidence approach used to simultaneously examine all three “sediment quality 
triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with 
sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 
stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high 
sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad 
parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study 
area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments).  
Generally, upon comparison, the number of stations with degraded sediments based upon the 
sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and 
southern Puget Sound study areas, with the percent of the total study area degraded in each region 
decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively).  Overall, the sediments 
collected in Puget Sound during the combined 1997-1999 surveys were among the least 
contaminated relative to other marine bays and estuaries studied by NOAA using equivalent 
methods. 
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Executive Summary 
Numerous studies of Puget Sound have documented the degree of chemical contamination and 
associated adverse biological effects within many different urbanized bays and harbors.  Data 
from previous research have shown that contamination occurred in sediments, water, sea surface 
microlayers, fishes, benthic invertebrates, sea birds, and marine mammals in parts of Puget 
Sound. Severe toxicity of sediments in laboratory tests has been reported in previous studies 
along with significant alterations to resident benthic populations.  Severe histopathological 
conditions in the organs of demersal fishes have been shown in many studies, sometimes 
accompanied by reduced reproductive success.  Reproductive disorders were reported in resident 
marine mammals.  Acute toxicity of sea surface microlayers has been shown in several studies in 
urban bays.  Uptake and bioaccumulation of toxicants in sea birds and marine mammals has been 
observed.  All these data, together, suggested that chemical contamination was toxicologically 
significant in Puget Sound.  However, none of the previous surveys attempted to quantify the 
area or spatial extent of contamination or toxicant-related effects.  Therefore, although numerous 
reports from previous studies indicated the severity or degree of contamination and adverse 
effects, none reported the spatial scales of the problems. 

The overall goal of the cooperative program initiated by the Washington State Department of 
Ecology (Ecology) as a part of its Puget Sound Ambient Monitoring Program (PSAMP) and the 
National Oceanic and Atmospheric Administration (NOAA) as a part of its National Status and 
Trends Program (NS&TP) was to quantify the percentage of Puget Sound in which sediment 
quality was significantly degraded.  The technical objectives of the cooperative assessment of 
bioeffects in Puget Sound were to: 

1. Determine the incidence and severity of sediment contamination and toxicity;  

2. Identify spatial patterns and gradients in sediment toxicity and chemical concentrations; 

3. Estimate the spatial extent of toxicity and chemical contamination in surficial sediments as 
percentages of the total survey area; 

4. Describe the composition, abundance and diversity of benthic infaunal assemblages at each 
sampling location; 

5. Estimate the apparent relationships between measures of sediment toxicity, toxicant 
concentrations, and benthic infaunal assemblage indices; and 

6. Compare the quality of sediment from northern, central, and southern Puget Sound measured 
in the three phases of this study. 

The approach selected to accomplish this goal was to measure the components of the sediment 
quality triad at sampling locations chosen with a stratified-random design.  One hundred samples 
were collected in southern Puget Sound during June/July, 1999, at locations selected randomly 
within 33 geographic strata.  The study area extended from the vicinity of Des Moines to Shelton, 
plus all of Hood Canal.  Strata were selected to represent conditions near major urban centers 
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(e.g., Tacoma, Olympia) and less developed areas.  The 33 strata were determined to encompass 
a total area of 858 km2.   

A battery of four toxicity tests was performed on all samples to provide information from a 
variety of toxicological endpoints.  Results were obtained with an acute test of survival of marine 
amphipods exposed to solid phase sediments.  The toxicity of sediment pore waters was 
determined with a test of fertilization success among sea urchin gametes.  A microbial 
bioluminescence test of metabolic activity was performed in exposures to organic solvent 
extracts along with a cytochrome P450 HRGS activity test in exposures to portions of the same 
solvent extracts.  Chemical analyses were performed on all samples to quantify the 
concentrations of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and 
the physical/sedimentological characteristics of the sediments.  Chemical concentrations were 
compared to applicable numerical guidelines from NOAA and state standards for Washington to 
determine which samples were contaminated.  Resident benthic infauna were collected to 
determine the relative abundance, taxa richness, taxa composition, and other characteristics of 
the invertebrate assemblages present in the sediments at each site. 

The area in which highly significant toxicity occurred totaled 0% of the total area in the 
amphipod survival tests; 5.7% of the area in urchin fertilization tests of 100% pore waters; 0.2% 
of the area in microbial bioluminescence tests; and 5-38% of the area in the cytochrome P450 
HRGS assays. The estimates of the spatial extent of toxicity measured in these tests of southern 
Puget Sound sediments generally were lower than the “national average” estimates compiled 
from many other surveys previously conducted by NOAA.  Generally, they were comparable to 
the estimates for northern Puget Sound, but somewhat higher than what was observed in the 
central region.  The large majority of the area surveyed was classified as non-toxic in these tests.   

The laboratory tests indicated overlapping, but, different, spatial patterns in toxicity.  Based upon 
analysis of all the data combined, several spatial patterns were apparent in this survey.  Most 
obvious were the toxic responses in the two tests of organic solvent extracts observed in some of 
the industrialized waterways of Commencement Bay at Tacoma.  The responses in samples from 
Thea Foss Waterway were very high in both the HRGS and Microtox tests.  Significant 
responses were also observed in both the amphipod and urchin tests in one of the samples.  The 
degree of toxicity in Hylebos and Middle waterways was lower, but, nonetheless, represented 
conditions considerably different from those observed elsewhere in the survey area.  The toxicity 
observed in the waterways gradually diminished into the outer reaches of the bay and decreased 
again into East Passage. 

Other industrialized harbors of southern Puget Sound in which sediments induced toxic 
responses included Port of Olympia, Oakland Bay at Shelton, Gig Harbor, and Port Ludlow.  
Sediments in most of the South Sound inlets and passages were relatively non-toxic in any of the 
tests.  However, based upon the HRGS and Microtox tests of organic solvents, conditions in 
the southern Puget Sound inlets and channels were different (i.e., more toxic) than in the 
majority of Hood Canal.  

Twenty of the 100 samples collected had one or more chemical concentrations that exceeded 
applicable, effects based sediment guidelines and/or Washington State standards.  Among these 
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samples, chemical contamination was highest in eight samples collected in or near the 
industrialized waterways of Commencement Bay.  Samples from the Thea Foss and Middle 
Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas 
those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons.  The 
remaining 12 samples with elevated chemical concentrations primarily had high levels of other 
chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol.  
There was a distinct spatial pattern in contamination in Commencement Bay: i.e., high 
concentrations in the waterways diminished rapidly into the outer reaches of the bay.  However, 
there were no other equally clear gradients elsewhere in the study area. 

For all trace metals (excluding nickel), there were a total of 4 effects range-median (ERM), 3 
sediment quality standard (SQS), and 3 cleanup screening level (CSL) samples exceeded 
respectively, encompassing a total of 0.84, 0.68, and 0.68%, respectively, of the total study area.  
Significant metals contamination occurred in Port Gamble Bay, Totten Inlet, and in both the 
Thea Foss and Middle Waterways of Commencement Bay, and mercury was the most commonly 
found contaminant.  There were totals of 6, 4, and 1 samples with PAHs exceeding ERM, SQS, 
and CSL values, respectively, encompassing a total of 0.30, 0.23, and <0.01% of the study area.  
Contaminants were again observed in Port Gamble Bay and Commencement Bay, including both 
the Thea Foss and Middle Waterways.  PCB chemicals exceeded guidelines and criteria in 2 
(ERM) and 3 (SQS) stations in the Thea Foss and Hylebos Waterways, representing 0.04 and 
0.07% of the study area.  Other organic chemicals, including benzoic acid and benzyl alcohol 
exceeded SQS and CSL values in 5 or fewer samples, roughly representing 3% or less of the 
study area, including stations in Budd Inlet, Port of Olympia, Henderson Inlet, E. Anderson 
Island, and Hale and Pickering Passages.  Hexachlorobenzene values exceeded the SQS value at 
all three stations in the Hylebos Waterway (representing 0.08% of the study area). 

Although the study was not intended to determine the causes of toxicity in the tests, a number of 
statistical analyses were conducted to estimate which chemicals, if any, may have contributed to 
toxicity.  As expected, strong statistical associations between measures of toxicity and complex 
mixtures of PAHs, pesticides, phenols, other organic chemicals, and several trace metals were 
observed. The strongest associations were those between cytochrome P450 HRGS induction and 
the concentrations of PAHs in the sediments.  These relationships were observed previously in 
both northern and central Puget Sound.   

As with the previous infaunal assemblage studies conducted in north and central Puget Sound 
(Long, et al. 1999a, 2000), benthic infaunal assemblages in south Puget Sound had a wide 
variety of characteristics in different locations and habitat types throughout the study area.  
Infaunal assemblages examined typically displayed relatively high abundance, taxa richness, 
evenness, and dominance values.  Polychaetes were typically the most abundant taxa group (up 
to 93% of the infaunal composition), followed by arthropods (up to 75%), mollusks (up to 70%), 
echinoderms (up to 55%), and miscellaneous taxa (up to 33%).  Two samples collected in the 
Port of Olympia near a superfund cleanup site had no living organisms in them.  In general, 
many of the small embayments and inlets throughout the study area had infaunal assemblages 
with relatively low total abundance, taxa richness, evenness, and dominance values.  In some of 
the small urban/industrial embayments however, cases were found where total abundance values 
were very high, typically due to high abundance of one organism such as the polychaete 
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Aphelochaeta sp. N1; the clam Axinopsida serricata; the amphipod Aoroides spinosus; or the 
brittlestar Amphiodia urtica/periercta complex.  The majority of the samples collected from 
passages, outer embayments, and larger bodies of water tended to have infaunal assemblages 
with high total abundance, taxa richness, evenness, and dominance values. 

Statistical analyses of the toxicity data and benthic data revealed few consistent patterns.  The 
relationships between measures of benthic structure and chemical concentrations showed mixed 
results. Both taxa richness and the dominance index were negatively correlated with the 
concentrations of trace metals in the samples.  Highly significant positive correlations indicated 
that the abundance of the benthos and the numbers of species increased as the concentrations of 
PAHs increased.  In addition, the abundance of annelids and molluscs showed increasing 
abundance with increasing PAH concentrations.  Therefore, these data suggest that the benthic 
assemblages were tolerant of the chemical concentrations in these samples and attracted to the 
sampled areas by other ecological factors. 

A weight-of-evidence approach was used to simultaneously examine all three “sediment triad” 
parameters measured, defining each station based on the number of impaired parameters 
measured at the station.  Four categories of sediment quality were generated, including “High 
Quality” (none of the sediment triad parameters impaired), “Intermediate/High Quality” (one 
sediment triad parameter impaired), “Intermediate/Degraded Quality” (two sediment triad 
parameters impaired), and “Degraded Quality” (all of the sediment triad parameters impaired). 

There were 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment 
toxicity, chemical contamination, and altered benthos (i.e., “degraded sediment quality”).  
Typically, these stations were shallow, represented a small area, were primarily located in major 
urban areas, and had relatively fine grain size and high TOC values.   Infaunal assemblages 
typically had higher total abundance (usually due to one or two abundant dominant organisms), 
moderate taxa richness and evenness, lower dominance values, and were dominated by annelids 
(sometimes in high abundance), followed by molluscs, arthropods, echinoderms, and 
miscellaneous taxa.  The polychaete species Aphelochaeta sp. N1 was the dominant taxon at ten 
of the eleven stations. 

In contrast, 36 stations (representing 493.5 km2, 57.5% of the total study area) displayed no 
toxicity or chemical contamination, and abundant and diverse infaunal assemblages.  These 
stations typically included the larger, deeper inlets, basins, and passages of the more rural areas 
of south Puget Sound and Hood Canal, as well as a few smaller embayments.  They tended to 
have coarser sediment with lower TOC content than those stations with degraded sediment 
quality.  Infaunal assemblages at these stations had lower total abundance, and higher evenness 
and dominance values than those stations with degraded sediment quality.   

Thirty-five stations (274.1 km2, 32.0% total study area) had one impaired sediment triad 
parameter (i.e., intermediate/high quality sediments), and included stations with characteristics 
similar to those with high quality sediments.  The remaining 18 stations (85.7km2, 10.0% total 
study area) displayed two impaired sediment parameters (i.e., intermediate/degraded quality 
sediments), and included stations with characteristics similar to those with degraded sediments.   
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Generally, upon comparison, the number of stations with degraded sediments based upon the 
sediment quality triad of data was slightly greater in the central Puget Sound than in the northern 
and southern Puget Sound study areas, with the percent of the total study area degraded in each 
region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively).  In 
comparison, the Puget Sound sediments were considerably less degraded than those from other 
NOAA sediment surveys conducted nationwide. 

Data from these surveys of Puget Sound sediment quality can provide the basis for quantifying 
changes in sediment quality, if any, in future years.  A probabilistic random, stratified sampling 
design and similar analytical methods could be used in the future to generate comparable data, 
allowing the measurement of change in Puget Sound sediment quality that can be expressed in 
terms of the percentage of area that is degraded.  
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Introduction  
Project Background 
In 1996 the Washington Department of Ecology (Ecology) and the National Oceanic and 
Atmospheric Administration (NOAA) entered into a three year Cooperative Agreement to 
quantify the magnitude and extent of toxicity and chemical contamination of sediments in Puget 
Sound.  This agreement combined the sediment monitoring and assessment programs of the two 
agencies into one large survey of Puget Sound.   

Ecology’s Marine Sediment Monitoring Team has conducted the Sediment Monitoring 
Component of the Puget Sound Ambient Monitoring Program (PSAMP) since 1989.  This 
program used the sediment quality triad approach of Long and Chapman (1985) to determine 
relative sediment quality in Puget Sound. Preceding the joint surveys with NOAA, Ecology 
established baseline data for toxicity and chemical contamination of Puget Sound sediments 
(Llansó et al., 1998a) and characterized infaunal invertebrate assemblages (Llansó et al., 1998b) 
at 76 selected monitoring stations throughout Puget Sound.  A portion of this baseline work is 
continuing at a subset of ten stations at the present time. 

The National Status and Trends (NS&T) Program of NOAA has conducted bioeffects 
assessment studies in more than 30 estuaries and marine embayments nationwide since 1990 
(Long et al., 2000).  Most of these studies followed a random-stratified sampling design and the 
triad approach to estimate the spatial extent, magnitude, and spatial patterns in relative sediment 
quality and to determine the relationships among measures of chemical contamination, toxicity, 
and benthic infaunal structure within the study areas.  Puget Sound was selected for such a study 
for a number of reasons.  First, historical data showed the presence of toxicants in sufficiently 
high concentrations to cause adverse biological effects.  Second, there was a lack of quantitative 
data on the spatial extent of toxicity in the area.  Third, there was a possibility of a collaboration 
effort between NOAA and a state agency partner (Ecology) in performing the study.   

The current joint project of Ecology and NOAA utilizes NOAA’s random-stratified sampling 
design and the sediment quality triad approach for the collection and analyses of sediment and 
infauna.  The project was broken into three sampling periods.  Sediments were sampled in 
northern Puget Sound in 1997 (Long et al., 1999), central Puget Sound in 1998 (Long et al., 
2000), and southern Puget Sound in 1999 (this report). 

Site Description 
The overall study area encompassed the basins and channels from the U.S./Canada border to the 
southern-most bays and inlets near Olympia and Shelton and included portions of Admiralty 
Inlet and Hood Canal (Figure 1).  This region located in northwestern Washington is composed 
of a variety of interconnected shallow estuaries and bays, deep fjords, broad channels and river 
mouths.  It is bounded by three major mountain ranges; the Olympics to the west, the mountains 
of Vancouver Island to the north, and the Cascade Range to the east.  The northern end of Puget 
Sound is open to the Strait of Juan de Fuca and the Strait of Georgia, connecting it to the Pacific 
Ocean.  The estuary extends for about 130 km from Admiralty Inlet at the northern end of the 
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main basin to Olympia at the southern end and ranges in width from 10 to 40 km (Kennish, 
1998). 

The main basin of Puget Sound was glacially scoured with depths up to 300 m, has an area of 
2600 km2 and a volume of 169 km3 (Kennish, 1998).  Circulation in Puget Sound is driven by 
complex forces of freshwater inputs, tides, and winds.  Puget Sound is characterized as a two-
layered estuarine system with marine waters entering the Sound at the sill in Admiralty Inlet 
from the Strait of Juan de Fuca at depths of 100 to 200 m and freshwater entering from a number 
of large streams and rivers.  Major rivers entering Puget Sound include the Skagit, Snohomish, 
Cedar, Duwamish, Puyallup, Stillaguamish, and Nisqually (Figure 1).  The Skagit, 
Stillaguamish, and Snohomish rivers account for more than 75% of the freshwater input into the 
Sound (Kennish, 1998).  The mean residence time for water in the central basin is approximately 
120-140 days, but is much longer in the isolated inlets and restricted deep basins in southern 
Puget Sound.   

The bottom sediments of Puget Sound are composed primarily of compact, glacially-formed, 
clay layers and relict glacial tills (Crandell et al., 1965).  Major sources of recent sediments are 
derived from shoreline erosion and riverine discharges. 

Puget Sound is a highly complex, biologically important ecosystem that supports major 
populations of benthic invertebrates, estuarine plants and kelp, resident and migratory fish, 
marine birds, and marine mammals.  All of these resources depend upon uncontaminated habitats 
to sustain their population levels.  The Sound is bordered by both undeveloped lands and highly 
urbanized and industrialized areas.  Major urban centers include the cities of Seattle, Tacoma, 
Olympia, Everett, Bremerton, and Bellingham.  

The portion of the Puget Sound study conducted in 1999 focused upon the southern region of the 
study area, i.e., from the southern boundary of the 1998 study area (i.e., Maury Island/Des 
Moines) to the southern end of Puget Sound, including Hood Canal (Figure 1).  The 1999 study 
area, therefore, included portions of the main basin of Puget Sound, Commencement Bay, Case 
Inlet, Carr Inlet, Budd Inlet, Henderson Inlet, Eld Inlet, Oakland Harbor, and Pickering Passage. 

Toxicant-Related Research in Puget Sound 
Puget Sound waters support an extremely diverse spectrum of economically important biological 
resources.  In addition to extensive stocks of salmon, a variety of other species (e.g. cod, 
rockfish, clams, oysters and crabs) support major commercial and recreational fisheries.  Studies 
have shown that high concentrations of toxic chemicals in sediments are adversely affecting the 
biota of the sound via detritus-based food webs.  Studies of histopathological, toxicological, and 
ecological impacts of contaminants have focused primarily on biota collected in areas potentially 
influenced by port activities and municipal or industrial discharges (Ginn and Barrick, 1992).  
Therefore, the majority of studies of toxicant effects have focused on Elliott and Commencement 
bays.  

Within the 1999 survey area, most of the previous research was done in Commencement Bay.  
Research was conducted on the presence, concentrations, and biological significance of 
toxicants.  Much of this research was conducted to quantify chemical concentrations in 
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sediments, animal tissues, water, marine mammals, marine birds, and sea surface microlayers.  
Some studies also were conducted to determine the history of chemical contamination using 
analyses of age-dated sediment cores.  The objectives of these studies often included analyses of 
the biological significance of the chemical mixtures.  Biological studies have been conducted to 
determine the frequency of lesions and other disorders in demersal fishes; the toxicity of 
sediments; the toxicity of water and sea surface microlayers; reproductive dysfunction in fishes, 
birds, and mammals; and the degree of effects upon resident benthic populations. 

Studies performed by NOAA through the MESA (Marine Ecosystems Analysis) Puget Sound 
Project determined the concentrations of toxic substances and toxicity in sediments with a 
battery of acute and chronic tests performed on samples collected throughout most of the Puget 
Sound region.  However, early in the MESA Project, attention was focused upon the recurring 
problem of acute mortality among bivalve embryos in samples of water from South Puget Sound 
(Cardwell et al., 1979).  Experimental research demonstrated that toxicity was worst in several of 
the inlets of the region and probably caused by a combination of factors that included high 
concentrations of toxic dinoflagellates and ammonia. 

The MESA sediment toxicity surveys were conducted in a sequence of four phases in the early 
1980’s.  In the first phase (Chapman et al., 1982), samples collected from 97 locations were 
tested with several bioassays.  Samples were collected mainly at selected locations within Elliott 
Bay, Commencement Bay, and Sinclair Inlet.  Tests were performed to determine survival of 
oligochaetes, amphipods, and fish; respiration measurements of oligochaetes; and chromosomal 
damage in cultured fish cells.  The results of multiple tests indicated that some portions of Elliott 
Bay near the Denny Way CSO and several of the industrialized waterways of Commencement 
Bay were highly toxic and samples from Port Madison and Birch Bay were among the least 
toxic. 

In the second phase of the MESA Puget Sound sediment toxicity surveys, tests were performed 
to identify diminished reproductive success among test animals exposed to sediments (Chapman 
et al., 1983).  These tests involved oyster embryo development, surf smelt development, and a 
polychaete worm life cycle bioassay.  Samples from the lower Duwamish River and the 
Commencement Bay waterways were the most toxic.  In the third phase, 22 samples were 
collected in Everett Harbor, Bellingham Bay, and Samish Bay in northern Puget Sound and 
tested with the same battery of tests used in the first phase of the studies (Chapman et al., 
1984a).  Toxicity was less severe in these 22 samples than in comparable samples from Elliott 
and Commencement bays.  However, the sediments from Everett Harbor demonstrated greater 
toxicity than those from Bellingham Bay and samples from Samish Bay were the least toxic. 

In the fourth and final phase, sediment quality was determined with the introduction of the 
sediment quality triad approach (Chapman et al., 1984b; Long and Chapman, 1985).  Matching 
chemical, toxicity, and benthic data were compiled to provide a weight of evidence to rank 
sampling sites.  Data from several locations in Elliott and Commencement bays and Sinclair Inlet 
were compared with data from Case Inlet and Samish Bay.  As observed in the previous phases, 
the data clearly showed a pattern of low sediment quality in samples from the urbanized areas 
relative to those from the more rural areas.   
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Histopathology studies that included southern Puget Sound indicated that biological impacts 
such as hepatic neoplasms, intracellular storage disorders, and lesions in fish were pollution-
related.  They were found most frequently near industrial urban areas, including portions of 
Elliott Bay, Sinclair Inlet, Eagle Harbor and the nearshore waterways of Commencement Bay 
(Malins et. al., 1980, 1982, 1984; U.S. EPA, Region X, 1986).  Fish with such disorders often 
had the highest concentrations of organic chemicals and trace metals in their tissues. 

Studies in which toxicity tests were performed confirmed histopathological findings that 
pollution-induced biotic impacts were more likely to occur near industrial urban areas (Chapman 
et. al., 1982; Malins, et. al., 1982; Malins et. al. 1988; Llansó et. al., 1998). Numerous analyses 
of contaminant exposures and adverse effects in resident demersal fishes were conducted in most 
of the urbanized bays and harbors (Malins et. al. 1980, 1982, 1984).  Data from these studies 
demonstrated that toxicant-induced, adverse effects were apparent in fish collected in urban 
harbors of Puget Sound and the prevalence of these effects was highest in areas with highest 
chemical concentrations in the sediments to which these fish were exposed.  The incidence of 
neoplastic lesions was highest among fish from Eagle Harbor.  Similar kinds of analyses were 
performed on resident marine birds and marine mammals, demonstrating that chemical levels in 
these animals were elevated in regions of Elliott and Commencement bays relative to animals 
from the Strait of Juan de Fuca and elsewhere (Calambokidis et. al., 1984). 

A summary of available data from sediment toxicity tests performed in Puget Sound through 
1984 (Long, 1984) indicated that sediments were most toxic in samples from the waterways of 
Commencement Bay, Elliott Bay off the Denny Way CSO, inner Sinclair Inlet, lower Duwamish 
Waterway, Quilcene Bay, Bellingham Bay, and inner Everett Harbor.  Significant results were 
reported in acute survival tests with amphipods, sublethal assays of respiration rate changes, tests 
of mutagenic effects in fish cells, and oyster embryo development tests. Swartz et al. (1982) 
demonstrated the remarkable differences in sediment toxicity in the Commencement Bay 
waterways versus that of the open bay.  Poor amphipod survival in their survey was coincidental 
with low amphipod abundance in the benthic samples and elevated chemical concentrations. 

Studies of invertebrate communities conducted in central Puget Sound have indicated significant 
losses of benthic resources in some areas with high chemical concentrations (Malins, et. al., 
1982; Kisker, 1986; Chapman et. al., 1984; Becker et. al., 1987, Llansó et. al., 1998).  The 
longest term and most extensive sampling of infaunal invertebrate communities were conducted 
by the Puget Sound Ambient Monitoring Program, established in 1989.  The program sampled 
20 sites in southern Puget Sound, 15 of which were sampled yearly from 1989-95 and 5 that 
were sampled once in 1991 and once again in 1994. 

The colonization rates and species diversity of epifaunal communities that attached to vertical 
test surfaces was lowest at locations in the lower Duwamish River as compared to sites 
elsewhere in Puget Sound (Schoener, 1983).  In the same study, colonization rates were 
intermediate at locations in Milwaukee, Blair, and Hylebos waterways near Commencement 
Bay.  The highest rates were observed in locations monitored at Manchester and outer Elliott 
Bay.   

Samples of sea surface microlayers from Elliott Bay were determined to be contaminated and 
toxic in acute tests done with planktonic life stages of marine fish (Hardy and Word, 1986; 
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Hardy et al., 1987a, 1987b).  Historical trends in chemical contamination were reviewed and the 
physical processes that influence the fate and transport of toxicants in regions of Puget Sound 
were summarized in a variety of reports (Dexter et. al., 1981; Barrick, 1982; Konasewich et al., 
1982; Long 1982; Crecelius et al., 1985). 

Following the work by NOAA, additional studies of chemical contamination were supported by 
the Puget Sound National Estuary Program (PSEP).  The PSEP studies further identified spatial 
patterns in sediment contamination, toxicity, and benthic effects in selected urban embayments 
and reference areas throughout Puget Sound.  In an exhaustive assessment of sediment quality in 
the nearshore waterways of Commencement Bay, data were collected on contamination and 
toxicity of sediments, the abundance and diversity of infaunal macroinvertebrates, and the 
prevalence of histopathological disorders in demersal fishes (Tetra Tech, 1985).  This study 
further verified the findings of the NOAA studies, namely, that the industrialized waterways 
were highly contaminated relative to the more rural Carr Inlet of South Puget Sound.  It also 
demonstrated the significant differences in chemical mixtures that occurred among the different 
waterways as a function of the types of nearby sources. 

In 1988, the PSEP funded a study of four embayments (Dyes Inlet, Gig Harbor, Port Angeles 
Harbor, and Oak Harbor/Shelton) to determine the degree of contamination and biological 
effects in sediments and fish (Crecelius et al., 1989).  The data indicated that chemical 
concentrations were lower in these four bays than in Elliott and Commencement bays.  Also, 
none of the sediment samples was toxic in amphipod bioassays. 

The PSEP also formulated tentative plans for cleaning up some of the more contaminated sites. 
Although extensive deep portions of Puget Sound and most rural bays are relatively 
contaminant-free, parts of the bays bordering urban, industrialized centers contained high 
concentrations of toxic chemicals (Long and Chapman, 1985; Llansó et. al., 1998a).  Other 
programs and studies, including the Puget Sound Dredged Disposal Analysis Program (PTI, 
1989) and the Puget Sound Ambient Monitoring Program (Llansó et al., 1998a,b), characterized 
baseline sediment quality conditions and trends throughout Puget Sound.   

In addition to these large-scale studies, federal, state and local government, as well as private 
industry, has conducted a vast number of smaller, localized studies on Puget Sound sediments, 
primarily for regulatory purposes.  These studies have focused on the level of chemical 
concentrations in sediments, the incidence of abnormalities and diseases in fish and benthic 
invertebrates, the level and degree of sediment toxicity to various bioassay organisms, the 
relationship between sediment contamination and the composition of benthic invertebrate 
communities, and to a lesser extent, the associations between sediment contamination, toxicity, 
and resident marine bird and mammal populations.  

Information gathered from the surveys of toxicity in sediment, water, and microlayer and the 
studies of adverse effects in resident benthos, fish, birds and mammals confirmed that conditions 
were most degraded in urbanized embayments of Puget Sound, including Elliott and 
Commencement bays (Long, 1987).  All of the data from the historical research, collectively, 
served to identify those regions of Puget Sound in which the problems of chemical 
contamination were the worst and in which management actions of some kind were most needed 
(NOAA, 1987).  However, although these previous studies provided information on the degree 
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and spatial patterns in chemical contamination and effects, none attempted to quantify the spatial 
extent of either contamination or measures of adverse effects.  None of the previous studies 
generated reliable estimates of the spatial scales of chemical contamination or adverse effects. 

The Sediment Quality Information System (SEDQUAL) Database 

Ecology's Sediment Management Unit has compiled a database that includes sediment data from 
over 430 Puget Sound sediment surveys of varying size and scope.  The Sediment Quality 
Information System (SEDQUAL) database includes approximately 688,000 chemical, 140,000 
benthic infauna, and 35,000 bioassay analysis records from over 12,000 sample collection 
stations throughout Puget Sound.  For the southern Puget Sound study area defined in this report, 
the SEDQUAL database currently contains sediment data from 3141 samples (218 surveys, 
Appendix A) collected from 1950-2000.  Using the analytical tools available in SEDQUAL, 
these data can be compared to chemical contaminant guidelines from NOAA and criteria set 
forth in the Washington State Sediment Management Standards (SMS), Chapter 173-204 WAC., 
the Sediment Quality Standards (SQS) and Puget Sound Marine Sediment Cleanup Screening 
Levels (CSL).  Of the 3141 SEDQUAL samples from southern Puget Sound, 772 have chemical 
contaminant levels that exceeded at least one SQS or CSL value.  The majority of these stations 
are located near population centers, urban and industrial areas, and ports, including 
Commencement Bay, Hylebos Waterway, Blair Waterway, Middle Waterway, Thea Foss 
Waterway, and Port of Olympia (Figure 2).  A summary of the chemicals found in these southern 
Puget Sound SEDQUAL samples which exceeded SMS values, including their sample location 
and total number of samples, is given in Appendix B.  In southern Puget Sound, all 47 chemicals 
with SMS values were exceeded on at least one occasion. 

Goals and Objectives  
The shared goal of this study for both the PSAMP Sediment Monitoring Component and 
NOAA’s nationwide bioeffects assessment program was to characterize the ecotoxicological 
condition of sediments, as well as benthic infaunal assemblage structure, as a measure of adverse 
biological effects of toxic chemicals in southern Puget Sound.  Based upon chemical analyses of 
sediments reported in previous studies, it appeared that there were relatively high probabilities 
that concentrations were sufficiently high in some regions of the study area to cause acute 
toxicity and infaunal assemblage alterations.  Data from toxicity tests were intended to provide a 
means of determining whether toxic conditions, associated with high concentrations of chemical 
pollutants, actually occurred throughout any of the area.  Examination of infaunal assemblages 
was intended to determine whether sediment chemistry and toxicity conditions are correlated 
with patterns in infaunal community structure.  Underlying these goals was the intent to use a 
stratified-random sampling design that would allow the quantification of the spatial extent of 
degraded sediment quality. 

Based on the nature of sediment contamination issues in Puget Sound, and the respective 
mandates of NOAA and the state of Washington to address sediment contamination and 
associated effects in coastal waters, the objectives of the cooperative assessment of bioeffects in 
Puget Sound were to: 

1. Determine the incidence and severity of sediment toxicity in selected laboratory tests;  
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2. Identify spatial patterns and gradients in sediment toxicity and chemical concentrations; 

3. Estimate the spatial extent of toxicity and chemical contamination in surficial sediments as 
percentages of the total survey area; 

4. Describe the composition, abundance and diversity of benthic infaunal assemblages at each 
sampling location; 

5. Estimate the apparent relationships between measures of sediment toxicity, toxicant 
concentrations, and benthic infaunal assemblage indices; and 

6. Compare the quality of sediment from northern, central, and southern Puget Sound measured 
in the three phases of this study. 

This report includes a summary of the data collected in 1999 and correlation analyses to examine 
toxicity, chemistry, and infaunal relationships.  Results of further analyses relating toxicity, 
chemistry, and infaunal structure throughout the entire survey area will be reported in a 
subsequent document. 
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Methods 
Standardized methods described in the Puget Sound Estuary Program protocols (PSEP, 1996a), 
previously used in the 1997 and 1998 surveys of northern and central Puget Sound (Long et al., 
1999a, 2000), and previously followed in surveys of sediment quality conducted elsewhere in the 
U.S. by NOAA (Long et al., 1996) were followed in this survey.  Any deviations from these 
protocols are described below. 

Sampling Design 
By mutual agreement between Ecology and NOAA, the study area was established as the area 
extending from the southern boundary of the 1998 study area (i.e., Maury Island/Des Moines) to 
the southern end of Puget Sound, including Hood Canal.  The 1999 study area, therefore, 
included portions of the main basin of Puget Sound, Colvos Passage, Commencement Bay, Case 
Inlet, Carr Inlet, Budd Inlet, Henderson Inlet, Eld Inlet, Oakland Harbor, and Pickering Pass 
(Figure 3a-3e).  All samples were collected in depths of 6 ft. or more (mean lower low water), 
the operating limit of the sampling vessel. 

A stratified-random sampling design similar to those used in previous surveys conducted 
nationwide by NOAA (Long et al., 1996) and in the first two years of this study in northern and 
central Puget Sound (Long et al., 1999; 2000), was applied in southern Puget Sound.  This basic 
approach, first developed by US EPA as part of the Environmental Monitoring Assessment 
Program (Paul, et al., 1992; Schimmel et al., 1994), combines the strengths of a stratified design 
with the random-probabilistic selection of sampling locations within the boundaries of each 
stratum.  Data generated from multiple samples collected within each stratum can be attributed to 
the area (i.e., spatial area as acres, km2 or percent of area) of the stratum.  Therefore, these data 
allow us to estimate the spatial extent of degraded conditions with a quantifiable degree of 
confidence (Heimbuch, et al., 1995; Paul, et al., 1992).  Strata boundaries were established to 
coincide with the dimensions of major basins, bays, inlets, waterways, etc. in which 
hydrographic, bathymetric and sedimentological conditions were expected to be relatively 
homogeneous (Figure 3a).  Data from Ecology's SEDQUAL database were reviewed to assist in 
establishing strata boundaries. 

The study area was subdivided into 33 irregular-shaped strata (Figure 3a-e).  Large strata were 
established in the open waters of the area where toxicant concentrations were expected to be 
uniformly low (e.g., Case Inlet, Carr Inlet, Central Puget Sound basin, Colvos Passage, and  
Hood Canal).  This approach provided the least intense sampling effort in areas known or 
suspected to be relatively homogeneous in sediment type and water depth, and relatively distant 
from contaminant sources.  In contrast, relatively small strata were established in urban and 
industrial harbors nearer suspected sources in which conditions were expected to be 
heterogeneous or transitional (e.g., Commencement Bay, Port of Olympia, and Port of Shelton).  
As a result, sampling effort was spatially more intense in the small strata than in the large strata.  
The large strata were roughly equivalent in size to each other as were the small strata to one 
another (Table 1).  Areas with known topographic features that could not be sampled with our 
methods (i.e., vanVeen grab sampler) were excluded from the strata design (e.g., Dana Passage, 
which was known to have rocky substrate). 
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Within the boundaries of each stratum, all possible latitude/longitude intersections had equal 
probabilities of being selected as a sampling location.  The locations of individual sampling 
stations within each stratum were chosen randomly using GINPRO software developed by 
NOAA applied to digitized navigation charts.  In most cases three samples were collected within 
each stratum; however, four stations were sampled in several strata expected to be heterogeneous 
in sediment quality.  Four alternate locations were provided for each station in a numbered 
sequence.  The coordinates for each alternate were provided in tables and were plotted on the 
appropriate navigation chart.  In a few cases, the coordinates provided were inaccessible or only 
rocks and cobble were present at the location.  In these cases, the first set of station coordinates 
was rejected and the vessel was moved to the next alternate.  In the majority of the 100 stations, 
the first alternate location was sampled.  Final station coordinates are summarized in the 
navigation report (Appendix C). 

Sample Collection 
Sediments from 100 stations were collected during June 1999 with the 42’ research vessel 
Kittiwake.  Each station was sampled only once.  Differential Global Positioning System (DGPS) 
with an accuracy of better than 5 meters was used to position the vessel at the station 
coordinates.  The grab sampler was deployed and retrieved with a hydraulic winch. 

Prior to sampling each station, all equipment used for toxicity testing and chemical analyses was 
washed with seawater, Alconox soap, acetone, and rinsed with seawater.  Sediment samples were 
collected with a double 0.1 m2, stainless steel, modified vanVeen grab sampler.  Sediment for 
toxicity testing and chemical analyses was collected simultaneously with sediment collected for 
the benthic community analyses to ensure synoptic data.  Upon retrieval of the sampler, the 
contents were visually inspected to determine if the sample was acceptable (jaws closed, no 
washout, clear overlying water, sufficient depth of penetration).  If the sample was unacceptable, 
it was dumped overboard at a location away from the station.  If the sample was acceptable, 
information was recorded on station coordinates and the sediment color, odor, and type in field 
logs. 

One 0.1 m2 grab sample from one side of the sampler was collected for the benthic infaunal 
analyses.  Procedures described for collecting benthos in Puget Sound (PSEP, 1987) and in 
NOAA’s sediment assessments (Gotthom and Harmon, 2000) include collection of multiple 
samples at each location to lower costs, thereby precluding statistical comparisons of benthic 
community indices among stations.  All infaunal samples were rinsed gently through nested 1.0 
and 0.5 mm screens and the organisms retained on each screen were kept separate.  Organisms 
were preserved in the field with a 10% aqueous solution of borax-buffered formalin. 

From the other side of the sampler, sediment was removed for chemical and toxicity tests using a 
disposable, 2 mm deep, high-density polyethylene (HDPE) scoop.  The top two to three cm of 
sediment was removed with the scoop and accumulated in a HDPE bucket.  The sampler was 
deployed and retrieved from three to six times at each station, until a sufficient amount (about 7 
l) of sediment was collected in the bucket.  Between deployments of the grab, a Teflon plate was 
placed upon the surface of the sample, and the bucket was covered with a plastic lid and to avoid 
contamination, oxidation, and photo-activation.  After 7 l of sediment were collected, the sample 
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was stirred with a stainless steel spoon to homogenize the sediments and then transferred to 
individual jars for the various toxicity tests and chemical analyses. 

Precautions described above were taken to avoid contamination of the samples from engine 
exhaust, atmospheric particulates, and rain.  A double volume sample was collected at five 
stations for duplicate chemical analyses.  All samples were labeled and double-checked for 
station, stratum, and sample codes; sampling date; sampling time; and type of analysis to be 
performed.   

Samples for chemical and toxicity tests were stored on deck in sealed containers placed in 
insulated coolers filled with ice.  These samples were off-loaded from the research vessel every 
1-3 days, and transported to the walk-in refrigerator at Ecology’s headquarters building in 
Olympia.  They were held there at 4°C until shipped on ice by overnight courier to either the 
NOAA contractors for toxicity tests or the Manchester Environmental Laboratory for chemical 
analyses.  Chain of custody forms accompanied all sample shipments.  After a minimum of 24 
hours following collection and fixation, the benthic samples were rescreened (i.e., removed from 
formalin) and exchanged into 70% ethanol.   

Laboratory Analyses 
Toxicity Testing  

Multiple toxicity tests were performed on aliquots of each sample to provide a weight of 
evidence.  Tests were selected for which there were widely accepted protocols that would 
represent the toxicological conditions within different phases (partitions) of the sediments.  The 
tests included those for amphipod survival in solid-phase (bulk) sediments, sea urchin 
fertilization success in pore waters, and microbial bioluminescence activity and cytochrome 
P450 HRGS induction in an organic solvent extract.  Test endpoints, therefore, ranged from 
survival to level of physiological activity.  These four tests had been used previously in 
numerous sediment quality assessments conducted by NOAA nationwide (Long et al., 1996; 
Anderson et al., 1999a) and, therefore, did not necessarily comply with those mandated for use in 
Puget Sound regulatory actions.  Statistical analyses applied to the data collected in 1999 were 
the same as those used in the reports prepared for the data collected in 1997 and 1998.  The same 
methods were used to ensure consistency in the interpretation of data for all regions of the Sound 
and for other areas surveyed by NOAA nationwide. 

Amphipod Survival - Solid Phase 

The amphipod tests are the most widely and frequently used assays in sediment evaluations 
performed in North America.  They are performed with test crustaceans exposed to relatively 
unaltered bulk sediments.  Ampelisca abdita has shown relatively little sensitivity to nuisance 
factors such as grain size, ammonia, and organic carbon in previous surveys.  In surveys 
performed by the NS&T Program (Long et al., 1996), this test has provided wide ranges in 
responses among samples, strong statistical associations with elevated toxicant levels, and small 
within-sample variability. 

Ampelisca abdita is a euryhaline benthic amphipod that ranges from Newfoundland to south-
central Florida, and along the eastern Gulf of Mexico.  Also, it is abundant in San Francisco Bay 
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along the Pacific coast.  The amphipod test with A. abdita has been routinely used for sediment 
toxicity tests in support of numerous EPA programs, including the Environmental Monitoring 
and Assessment Program (EMAP) in the Virginian, Louisianian, Californian, and Carolinian 
provinces (Schimmel et al., 1994).   

Amphipod survival tests were conducted by ToxScan, Inc., Watsonville, CA.  All tests were 
initiated within 10 days of the date samples were collected.  Samples were shipped by overnight 
courier in one-gallon high-density polyethylene jugs which had been washed, acid-stripped, and 
rinsed with de-ionized water.  Sample jugs were packed in shipping coolers with blue ice.  Each 
was inspected to ensure they were within acceptable temperature limits upon arrival and stored at 
4°C until testing was initiated.  Prior to testing, sediments were mixed with a stainless steel 
paddle and press-sieved through a 1.0 mm mesh sieve to remove debris, stones, resident biota, 
etc. 

Amphipods were collected by SAIC from tidal flats in the Pettaquamscutt (Narrow) River, a 
small estuary flowing into Narragansett Bay, RI.  Animals were held in the laboratory in pre-
sieved uncontaminated (“home”) sediments under static conditions.  Fifty percent of the water in 
the holding containers was replaced every second day when the amphipods were fed.  During 
holding, A. abdita were fed laboratory-cultured diatoms (Phaeodactylum tricornutum).  Negative 
control sediments were collected by SAIC from the Central Long Island Sound (CLIS) reference 
station of the U.S Army Corps of Engineers, New England Division.  These sediments have been 
tested repeatedly with the amphipod survival test and other assays and found to be non-toxic 
(amphipod survival has exceeded 90% in 85% of the tests) and un-contaminated (Long et al., 
1996).  Sub-samples of the CLIS sediments were tested along with each series of samples from 
northern Puget Sound. 

Amphipod testing followed the procedures detailed in the Standard Guide for conducting 10 day 
Static Sediment Toxicity Tests with Marine and Estuarine Amphipods (ASTM, 1993).  Briefly, 
amphipods were exposed to test and negative control sediments for 10 days with 5 replicates of 
20 animals each under static conditions using filtered seawater.  Aliquots of 200 ml of test or 
control sediments were placed in the bottom of the one-liter test chambers, and covered with 
approximately 600 ml of filtered seawater (28-30 ppt).  Air was provided by air pumps and 
delivered into the water column through a pipette to ensure acceptable oxygen concentrations, 
but suspended in a manner to ensure that the sediments would not be disturbed.    

Temperature was maintained at ~20°C by a temperature-controlled water bath.  Lighting was 
continuous during the 10-day exposure period to inhibit the swimming behavior of the 
amphipods.  Constant light inhibits emergence of the organisms from the sediment, thereby 
maximizing the amphipod’s exposure to the test sediments.  Information on temperature, salinity, 
dissolved oxygen, pH and ammonia in test chambers was obtained during tests of each batch of 
samples to ensure compliance within acceptable ranges.  Ammonia concentrations were 
determined in both pore waters (day 0 of the tests) and overlying waters (days 2 and 8 of the 
tests).  Concentrations of the un-ionized form of ammonia were calculated, based upon measures 
of total ammonia, and concurrent measures of pH, salinity and temperature. 

Twenty healthy, active animals were placed into each test chamber, and monitored to ensure they 
burrowed into sediments.  Non-burrowing animals were replaced, and the test initiated.  The jars 
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were checked daily, and records were kept of animals that had died, were on the water surface, 
had emerged on the sediment surface, or were in the water column.  Animals on the water 
surface were gently freed from the surface film to enable them to burrow, and dead amphipods 
were removed. 

Tests were terminated after ten days.  Contents of each of the test chambers were sieved through 
a 0.5 mm mesh screen.  The animals and any other material retained on the screen were 
examined under a stereomicroscope for the presence of amphipods.  Total amphipod mortality 
was recorded for each test replicate. 

A positive control (reference toxicant) test was used to document the sensitivity of each batch of 
test organisms.  The positive control consisted of 96 hr water-only exposures to sodium dodecyl 
sulfate (SDS).  The LC50 (lethal concentration for 50% of the test animals) values were 
calculated for each test run with results from tests of five SDS concentrations. 

Sea Urchin Fertilization - Pore Water 

Tests of sea urchin fertilization have been used in assessments of ambient water and effluents 
and in previous NS&T Program surveys of sediment toxicity (Long et al., 1996).  Test results 
have shown wide ranges in responses among test samples, excellent within-sample homogeneity, 
and strong associations with the concentrations of toxicants in the sediments.  This test combines 
the features of testing sediment pore waters (the phase of sediments in which dissolved toxicants 
are highly bioavailable) and exposures to early life stages of invertebrates (sperm cells) which 
often are more sensitive than adult forms.  Tests of sediment pore water toxicity were conducted 
with the Pacific coast purple urchin Strongylocentrotus purpuratus by the U.S. Geological 
Survey laboratory in Corpus Christi, Texas.   

Sediments from each sampling location were shipped by overnight courier in one-gallon high-
density polyethylene jugs chilled in insulated coolers packed with blue ice.  Upon arrival at the 
laboratory, samples were either refrigerated at 4°C or processed immediately.  All samples were 
processed (i.e., pore waters extracted) within 10 days of the sampling date. 

Pore waters were extracted within ten days of the date of collection, usually within 2-4 days.  
Pore water was extracted from sediments with a pressurized squeeze extraction device (Carr and 
Chapman, 1995).  After extraction, pore water samples were centrifuged in polycarbonate bottles 
(at 1200 G for 20 minutes) to remove any particulate matter.  The supernatant was then frozen at 
-20°C.  Two days before the start of a toxicity test, samples were moved from a freezer to a 
refrigerator at 4°C, and one day prior to testing, thawed in a tepid (20°C) water bath.  
Experiments performed by USGS have demonstrated no effects upon toxicity attributable to 
freezing and thawing of the pore water samples (Carr and Chapman, 1995). 

Tests followed the methods of Carr and Chapman (1995); Carr et al. (1996a,b); Carr (1998) and 
USGS SOP F10.6, developed initially for Arbacia punctulata, but adapted for use with S. 
purpuratus.  Unlike A. punctulata, adult S. purpuratus cannot be induced to spawn with electric 
stimulus.  Therefore, spawning was induced by injecting 1-3 ml of 0.5 M potassium chloride into 
the coelomic cavity.  Tests with S. purpuratus were conducted at 15°C; test temperatures were 
maintained by incubation of the pore waters, the dilution waters and the tests themselves in an 
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environmental chamber.  Adult S. purpuratus were obtained from Marinus Corporation, Long 
Beach, CA.  Pore water from sediments collected in Redfish Bay, Texas, an area located near the 
testing facility, was used as negative controls.  Sediment pore waters from this location have 
been determined repeatedly to be non-toxic in this test in many trials (Long et al., 1996).  Each 
of the pore water samples was tested in a dilution series of 100%, 50%, and 25% of the water 
quality (salinity)-adjusted sample with 5 replicates per treatment.  Dilutions were made with 
clean, filtered (0.45 um), Port Aransas laboratory seawater, which has been shown in many 
previous trials to be non-toxic.  A dilution series test with SDS was included as a positive 
control. 

Sample temperatures were maintained at 20±1°C.  Sample salinity was measured and adjusted to 
30±1 ppt, if necessary, using purified deionized water or concentrated brine.  Other water quality 
measurements were made for dissolved oxygen, pH, sulfide and total ammonia.  Temperature 
and dissolved oxygen were measured with YSI meters; salinity was measured with Reichert or 
American Optical refractometers; pH, sulfide and total ammonia (expressed as total ammonia 
nitrogen, TAN) were measured with Orion meters and their respective probes.  The 
concentrations of un-ionized ammonia (UAN) were calculated using respective TAN, salinity, 
temperature, and pH values. 

For the sea urchin fertilization test, the samples were cooled to 15±1°C.  Fifty µl of appropriately 
diluted sperm were added to each vial, and incubated at 15±1°C for 30 minutes.  One ml of a 
well-mixed dilute egg suspension was added to each vial, and incubated an additional 30 minutes 
at 15± 2°C.  Two ml of a 10% solution of buffered formalin was added to stop the test.  
Fertilization membranes were counted, and fertilization percentages calculated for each replicate 
test. 

The relative sensitivities of S. purpuratus and A. punctulata were determined as a part of the 
1997 northern Puget Sound survey (Long et al., 1999a).  A series of five reference toxicant tests 
were performed with both species.  Tests were conducted with copper sulfate, PCB aroclor 1254, 
o,p’-DDD, phenanthrene, and naphthalene in seawater.  The data indicated that the two species 
generally were similar in their sensitivities to the five selected chemicals. 

Microbial Bioluminescence (Microtox) - Organic Solvent Extract  

This is a test of the relative toxicity of extracts of the sediments prepared with an organic 
solvent, and, therefore, it is unaffected by the effects of environmental factors, such as grain size, 
ammonia and organic carbon.  Organic toxicants, and to a lesser degree trace metals, that may or 
may not be readily bioavailable are extracted with the organic solvent.  Therefore, this test can 
be considered as indicative of the potential toxicity of mixtures of substances bound to the 
sediment matrices.  In previous NS&T Program surveys, the results of MicrotoxTM tests have 
shown extremely high correlations with the concentrations of mixtures of organic chemicals. 
MicrotoxTM tests were run by the U. S. Geological Survey Laboratory in Columbia, MO, on 
extracts prepared by Columbia Analytical Services (CAS) in Kelso, WA. 

The MicrotoxTM assay was performed with dichloromethane (DCM) extracts of sediments 
following the basic procedures used in testing Puget Sound sediments (PSEP, 1995) and 
Pensacola Bay sediments (Johnson and Long, 1998).  All sediment samples were stored in the 
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dark at 4°C for 5-10 days before processing was initiated.  A 3-4 g sediment sample from each 
station was weighed, recorded, and placed into a DCM-rinsed 50 ml centrifuge tube.  A 15 g 
portion of sodium sulfate was added to each sample and mixed.  Pesticide grade DCM (30 ml) 
was added and mixed.  The mixture was shaken for 10 seconds, vented and tumbled overnight. 

Sediment samples were allowed to warm to room temperature and the overlying water discarded.  
Samples were then homogenized with a stainless steel spatula, and 15-25 g of sediment were 
transferred to a centrifuge tube.  The tubes were spun at 1000 G for 5 minutes and the pore water 
was removed using a Pasteur pipette.  Three replicate 3-4 g sediment subsamples from each 
station were placed in mortars containing a 15g portion of sodium sulfate and mixed.  After 30 
minutes, subsamples were ground with a pestle until dry.  Subsamples were added to 50 ml 
centrifuge tubes and 30 ml of DCM were added to each tube and shaken to dislodge sediments.  
Tubes were shaken overnight on an orbital shaker at a moderate speed and then centrifuged at 
500 G for 5 min and the sediment extracts transferred to TurbovapTM tubes.  Then, 20 ml of 
DCM was added to sediment, shaken by hand for 10 seconds and spun at 500 g for 5 minutes.  
The previous step was repeated once more and all three extracts were combined in the 
TurbovapTM tube.  Sample extracts were then placed in the TurbovapTM and reduced to a volume 
of 0.5 ml.  The sides of the TurbovapTM tubes were rinsed down with methylene chloride and 
again reduced to 0.5 ml.  Then, 2.5 ml of dimethylsulfoxide (DMSO) were added to the tubes 
that were returned to the TurbovapTM for an additional 15 minutes.  Sample extracts were placed 
in clean vials and 2.5 ml of DMSO were added to obtain a final volume of 5 ml DMSO.  Because 
organic sediment extracts were obtained with DCM, a strong non-polar solvent, the final extract 
was evaporated and redissolved in DMSO.  The DMSO was compatible with the MicrotoxTM 
system because of its low test toxicity and good solubility with a broad spectrum of apolar 
chemicals (Johnson and Long, 1998). 

A suspension of luminescent bacteria, Vibrio fischeri (Azur Environmental, Inc.), was thawed 
and hydrated with toxicant-free distilled water, covered and stored in a 4°C well on the 
MicrotoxTM analyzer.  An aliquot of 10 µl of the bacterial suspension was transferred to a test 
vial containing the standard diluent (2% sodium chloride (NaCl)) and equilibrated to 15°C using 
a temperature-controlled photometer.  The amount of light lost per sample was assumed to be 
proportional to the toxicity of that test sample.  To determine toxicity, each sample was diluted 
into four test concentrations.  Percent decrease in luminescence of each cuvette relative to the 
reagent blank was calculated.  Light loss was expressed as a gamma value and defined as the 
ratio of light lost to light remaining.  The log of gamma values from these four dilutions was 
plotted and compared with the log of the samples’ concentrations.  The concentrations of the 
extract that inhibited luminescence by 50% after a 5-min exposure period, the EC50 value, was 
determined and expressed as mg equivalent sediment wet weight.  Data were reduced using the 
MicrotoxTM Data Reduction software package.  All EC50 values were average 5 minute readings 
with 95% confidence intervals for three replicates. 

A negative control (extraction blank) was prepared using DMSO, the test carrier solvent.  A 
phenol standard (45mg/l phenol) was run after re-constitution of each vial of freeze-dried V. 
fischeri.  Tests of extracts of sediments from the Redfish Bay, TX site used in the urchin tests 
also were used as negative controls in the MicrotoxTM tests. 
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Human Reporter Gene System (Cytochrome P450) Response - Organic Solvent Extract  

Sediment samples were also analyzed with the Human Reporter Gene System (cytochrome 
P450) response assay (P450 HRGS).  The test uses a transgenic cell line (101L), derived from 
the human hepatoma cell line (HepG2), in which the flanking sequences of the CYP1A gene, 
containing the xenobiotic response elements (XREs), have been stably linked to the firefly 
luciferase gene (Anderson et al. 1995, 1996).  As a result, the enzyme luciferase is produced in 
the presence of chemicals that bind the XREs.  This test is used to determine the presence of 
organic chemicals that bind to the Ah (aryl hydrocarbon) receptor and induce the CYP1A locus 
on the vertebrate chromosome.  Under appropriate test conditions, induction of CYP1A is 
evidence that the cells have been exposed to one or more of these xenobiotic organic chemicals, 
including dioxins, furans, planar PCBs, and several polycyclic aromatic hydrocarbons (Jones and 
Anderson, 1999).  Differences in the ability of the P450 enzyme to metabolize chlorinated and 
non-chlorinated chemicals allow for differentiation between these classes of chemicals in 
environmental samples.  Since most PAHs are rapidly metabolized, they exhibit a maximum 
response in 6 hours, at which point the response begins to fade.  Chlorinated hydrocarbons 
(dioxins, furans, and certain PCBs), on the other hand, do not show a maximum response until 
16 hours after exposure (Jones and Anderson, 2000). The P450 HRGS assay provides an 
estimate of the presence of contaminants bound to sediment that could produce chronic and/or 
carcinogenic effects in benthic biota and/or demersal fishes that feed in sediments.  These tests 
were run by the Columbia Analytical Services, Inc. in Vista, CA with solvent extracts prepared 
by their laboratory in Kelso, WA.  The details of this test are provided as U.S. EPA Method 4425 
(EPA, 1999), Standard Method 8070 by the American Public Health Association (APHA, 1998), 
and ASTM method E 1853M-98 by the American Society for Testing and Material (ASTM, 
1999).   

After removal of debris and pebbles, the sediment sample was homogenized, dried with 
anhydrous sodium sulfate, and 20 g of sediment was extracted by sonication with 
dichloromethane (DCM), also known as methylene chloride.  The extract was carefully 
evaporated and concentrated under a flow of nitrogen, and exchanged into a mixture of 
dimethylsulfoxide (DMSO), toluene and isopropyl alcohol (2:1:1) to achieve a final volume of 2 
mL.  The 2 mL extracts were split into two 1 mL vials for testing with the Microtox and P450 
HRGS assays.  The extraction procedure is well suited for extraction of neutral, non-ionic 
organic chemicals, such as aromatic and chlorinated hydrocarbons.  Extraction of other classes 
of toxicants, such as metals and polar organic chemicals, is not efficient.  DMSO is compatible 
with these tests because of its low toxicity and high solubility with a broad spectrum of non-
polar chemicals. 

Briefly, a small amount of organic extract of sediment (up to 20 µL), was applied to 
approximately one million cells in each well of a 6-well plate with 2 mL of medium.  Detection 
of enzyme induction in this assay was relatively rapid and simple to measure since binding of a 
xenobiotic with the Ah receptor results in the production of luciferase. 

After 16 hours of incubation with the extract, the cells were washed and lysed.  Cell lysates were 
centrifuged, and the supernatant was mixed with buffering chemicals.  Enzyme reaction was 
initiated by injection of luciferin.  The resulting luminescence was measured with a luminometer 
and was expressed in relative light units (RLUs).  A solvent blank (using a volume of solvent 
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equal to the sample’s volume being tested) and reference toxicants (TCDD, dioxin/furan 
mixture, B[a]P) were used with each batch of samples. 

Mean RLU, standard deviation, and coefficient of variation of replicate analyses of each test 
solution were recorded.  Enzyme fold induction (times background) was calculated as the mean 
RLU of the test solution divided by the mean RLU of the solvent blank.  From the standard 
concentration-response curve for benzo[a]pyrene (B[a]P), the HRGS response to 1 µg/mL was 
approximately 60.  Data were converted to µg of B[a]P equivalents per g of sediment by 
considering the dry weight of the samples, the volume of solvent, the amount added to the well, 
and the factor of 60 for B[a]P.  If 20 µL of the 2 mL extracts were used, then fold induction was 
multiplied by the volume factor of 100 and divided by 60 times the dry weight.  Since testing at 
only one time interval (16 h) was not allowed discrimination between PAHs and chlorinated 
hydrocarbons, the data were also expressed as Toxic Equivalents (TEQs).  Based on a standard 
curve with a dioxin/furan mixture, fold induction was equal to the TEQ (in pg/mL).  Therefore, 
fold induction was multiplied by the volume factor (e.g., 100), and divided by the dry weight 
times 1000 to convert pg to the TEQ in ng/g. 

Quality control tests were run with clean extracts spiked with tetrachlorodibenzo-p-dioxin 
(TCDD) and B[a]P to ensure compliance with results of previous tests.  From a long-term 
control chart, the running average fold induction for 1 ng/mL of dioxin was approximately 105, 
and fold induction for 1 µg/mL of B[a]P was 60.  Tests were rerun if the coefficient of variation 
for replicates was greater than 20%, and if fold induction was over the linear range (100 fold).  
HRGS tests performed on extracts from Redfish Bay, Texas, were used as a negative control. 

For a given study area, the B[a]P equivalent data were used to calculate the mean, standard 
deviation and 99% confidence interval for all samples (Anderson et al., 1999a).  Samples above 
the 99% confidence interval were generally considered to pose some chronic threat to benthic 
organisms.  The values from one investigation were compared to the overall database to evaluate 
the magnitude of observed concentration.  From analysis of the database, values less than 11 
µg/g B[a]P equivalents (B[a]PEq) were not likely to produce adverse effects, while impacts were 
uncertain between 11 and 37 µg B[a]PEq/g.  Moderate effects were expected at 37 µg/g, and 
sediment with over 60 µg B[a]PEq/g have been shown to be highly correlated with degraded 
benthic communities (Fairey, et al., 1996).  Previous studies have shown a high correlation of the 
HRGS responses in extracts of sediments and tissues to the content of PAHs in the samples 
(Anderson et al. 1999a, 1999b). 

Chemical Analyses  

Laboratory analyses were performed for 158 parameters and chemical chemicals (Table 2), 
including 133 trace metals, pesticides, hydrocarbons and selected normalizers (i.e., grain size, 
total organic carbon) that are routinely quantified by the NS&T Program.  An additional 20 
chemicals were required by Ecology to ensure comparability with previous PSAMP and 
enforcement studies.  Five additional chemicals were automatically quantified by Manchester 
Environmental Laboratory during analysis for the required chemicals.  Analytical procedures 
provided performance equivalent to those of the NS&T Program and the PSEP Protocols, 
including those for analyses of blanks and standard reference materials.  Information was 
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reported on recovery of spiked blanks, analytical precision with standard reference materials, and 
duplicate analyses of every 20th sample.  Practical Quantitation Limits were reported for 
chemicals that were at or below the detection limits and qualified with as undetected.   

The laboratory analytical methods and reporting limits for quantitation of the 158 chemistry 
parameters analyzed for are summarized in Table 3 and described in detail below.  Methods and 
resolution levels for field collection of temperature and salinity are included in Table 4. 

Grain Size 

Analysis for grain size was performed according to the PSEP Protocols (PSEP, 1986).  The 
PSEP grain size method is a sieve-pipette method.  In this method, the sample is passed through 
a series of progressively smaller sieves, with each fraction being weighed.  After this separation, 
the very fine material remaining is placed into a column of water, and allowed to settle.  Aliquots 
are removed at measured intervals, and the amount of material in each settling fraction is 
measured.  Analysis of this parameter was contracted by MEL to Rosa Environmental and 
Geotechnical Laboratory, LLC, Seattle, Washington. 

Total Organic Carbon (TOC) 

Total organic carbon analysis was performed according to PSEP Protocols (PSEP, 1986).  The 
method involves drying sediment material, pretreatment and subsequent oxidation of the dried 
sediment, and determination of CO2 by infra-red spectroscopy. 

Metals  

To maintain compatibility with previous PSAMP metals data, EPA Methods 3050/6010 were 
used for the determination of metals in sediment.  Method 3050 is a strong acid (aqua regia) 
digest that has been used for the last several years by Ecology for the characterization of 
sediments for trace metal contamination.  Method 3050 is also the recommended digestion 
technique for digestion of sediments in the recently revised PSEP protocols (PSEP, 1996c).  This 
digestion does not yield geologic (total) recoveries for most analytes including silicon, iron, 
aluminum and manganese.  It does, however, account for the deposition and presence of metals 
in sediments that have resulted from anthropogenic sources. 

For comparison with NOAA’s national bioeffects survey’s existing database, Manchester 
simultaneously performed a total (hydrofluoric acid-based) digestion (EPA method 3052) on 
portions of the same samples.  Determination of metals values for both sets of extracts were 
made via ICP, ICP-MS, or GFAA, using a variety of EPA methods (Table 3) depending upon the 
appropriateness of the technique for each analyte. 

Mercury 

Mercury was determined by USEPA Method 245.5, mercury in sediment, by cold vapor atomic 
absorption (CVAA).  The method consists of a strong acid sediment digestion, followed by 
reduction of ionic mercury to Hg0, and analysis of mercury by cold vapor atomic absorption.  
This method is recommended by the PSEP Protocols (PSEP, 1996c) for the determination of 
mercury in Puget Sound sediment.   
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Butyl Tins 

Butyl tins in sediments were analyzed by the Manchester method (Manchester Environmental 
Laboratory, 1997).  This method consists of solvent extraction of sediment, derivitization of the 
extract with the Grignard reagent hexylmagnesium bromide, cleanup with silica and alumina, 
and analysis by Atomic Emission Detector (AED). 

Base/Neutral/Acid (BNA) Organic Chemicals  

USEPA Method 846 8270, a recommended PSEP method (PSEP, 1996d), was used for semi-
volatile analysis.  This is a capillary column, GC/MS method.  

Polynuclear Aromatic Hydrocarbons (PAH) (extended list) 

At NOAA's request, the extended analyte list was modified by the inclusion of additional PAH 
chemicals. The PAH analytes were extracted separately using the EPA method SW846 3545.  
This method uses a capillary column GC/MS system set up in selective ion monitoring (SIM) 
mode to quantify PAHs.  Quantitation is performed using an isotopic dilution method modeled 
after USEPA Method SW 846 8270, referenced in PSEP, 1996d.   

Chlorinated Pesticides and Polychlorinated Biphenyl (PCB) Aroclors 

EPA Method 8081 for chlorinated pesticides and PCB was used for the analysis of these 
chemicals.  This method is a GC method with dual dissimilar column confirmation.  Electron 
capture detectors were used.  

PCB Congeners 

PCB methodology was based on the NOAA congener methods detailed in Volume IV of the 
NS&T Sampling and Analytical Methods documents (Lauenstein and Cantillo, 1993).  The 
concentrations of the standard NOAA list of 20 congeners were determined. 

Benthic Community Analyses 
Sample Processing and Sorting 

All methods, procedures, and documentation (chain-of-custody forms, tracking logs, and data 
sheets) were similar to those described for the PSEP (1987) and in the PSAMP Marine Sediment 
Monitoring Component – Final Quality Assurance Project and Implementation Plan (Dutch et 
al., 1998). 

Upon completion of field collection, benthic infaunal samples were checked into the benthic 
laboratory at Ecology’s headquarters building.  After a minimum fixation period of 24 hours 
(and maximum of 7-10 days), the samples were washed on sieves to remove the formalin (1.0 
mm fraction on a 0.5 mm sieve, 0.5 mm fraction on a 0.25 mm sieve) and transferred to 70% 
ethanol.  Sorting and taxonomic identification of the 0.5 mm fraction were completed separately 
by a NOAA contractor outside of the scope of work of this effort.  The results of these separate 
analyses will be reported elsewhere by NOAA.  After staining with rose bengal, the 1.0 mm 
sample fractions were examined under dissection microscopes, and all macroinfaunal 
invertebrates and fragments were removed and sorted into the following major taxonomic 
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groups: Annelida, Arthropoda, Mollusca, Echinodermata, and miscellaneous taxa.  Meiofaunal 
organisms such as nematodes and foraminiferans were not removed from samples, although their 
presence and relative abundance were recorded.  Representative samples of colonial organisms 
such as hydrozoans, sponges, and bryozoans were collected, and their relative abundance noted.  
Sorting QA/QC procedures consisted of resorting 25% of each sample by a second sorter to 
determine whether a sample sorting efficiency of 95% removal was met.  If the 95% removal 
criterion was not met, the entire sample was resorted. 

Taxonomic Identification 

Upon completion of sorting and sorting QA/QC, the majority of the taxonomic work was 
contracted to recognized regional taxonomic specialists.  Organisms were enumerated and 
identified to the lowest taxonomic level possible, generally to species.  In general, anterior ends 
of organisms were counted, except for bivalves (hinges), gastropods (opercula), and ophiuroids 
(oral disks).  When possible, at least two scientific references (preferably including original 
descriptions) were used for each species identification.  A maximum of three representative 
organisms of each species or taxon was removed from the samples and placed in a voucher 
collection, housed at the Ecology headquarters building in Lacey, WA.  Taxonomic 
identification quality control for all taxonomists included re-identification of 5% of all samples 
identified by the primary taxonomist and verification of voucher specimens generated by another 
qualified taxonomist.  

Data Summary, Display, and Statistical Analysis 
Toxicity Testing 
Amphipod Survival – Solid Phase  

Data from each station in which mean percent survival was less than that of the control were 
compared to the CLIS control using a one-way, unpaired t-test (alpha < 0.05) assuming unequal 
variance.  Results were not transformed because examination of data from previous tests has 
shown that results of tests performed with A. abdita met the requirements for normality. 

"Significant toxicity" for A. abdita is defined here as survival statistically less than that in the 
performance control (alpha < 0.05).  In addition, samples in which survival was significantly less 
than controls and less than 80% of CLIS control values were regarded as “highly toxic”.  The 
80% criterion is based upon statistical power curves created from SAIC's extensive database 
with A. abdita (Thursby et al., 1997).  Their analyses showed that the power to detect a 20% 
difference from the control is approximately 90%.  The minimum significant difference (i.e., 
“MSD” of <80% of control response) was used as the critical value in calculations of the spatial 
extent of toxicity (Long et al., 1996, 1999a). 

Sea Urchin Fertilization - Pore Water 

For the sea urchin fertilization tests, statistical comparisons among treatments were made using 
ANOVA and Dunnett's one-tailed t-test (which controls the experiment-wise error rate) on the 
arcsine square root transformed data with the aid of SAS (SAS, 1989).  The trimmed Spearman-
Karber method (Hamilton et al., 1977) with Abbott's correction (Morgan, 1992) was used to 
calculate EC50 (50% effective concentration) values for dilution series tests.  Prior to statistical 
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analyses, the transformed data sets were screened for outliers (Moser and Stevens, 1992).  
Outliers were detected by comparing the studentized residuals to a critical value from a t-
distribution chosen using a Bonferroni-type adjustment.  The adjustment is based on the number 
of observations (n) so that the overall probability of a type 1 error is at most 5%.  The critical 
value (CV) is given by the following equation: cv= t(dfError, .05/[2 x n]).  After omitting 
outliers but prior to further analyses, the transformed data sets were tested for normality and for 
homogeneity of variance using SAS/LAB Software (SAS, 1992).  Statistical comparisons were 
made with mean results from the Redfish Bay controls.  Reference toxicant concentration results 
were compared to filtered seawater controls and each other using both Dunnett’s t-test and 
Duncan’s multiple range test to determine lowest observable effects concentrations (LOECs) and 
no observable effects concentrations (NOECs). 

In addition to the Dunnett’s one-tailed t-tests, data from field-collected samples were treated 
with an analysis similar to the MSD analysis used in the amphipod tests.  Power analyses of the 
sea urchin fertilization data for A. punctulata have shown MSDs of 15.5% for alpha <0.05 and 
19% for alpha <0.01.  The 90th percentile MSD calculated for S. purpuratus fertilization was 
88% of control response (Phillips et al., 2001).  However, to be consistent with the statistical 
methods used in previous surveys (Long et al., 1996, 1999a), estimates of the spatial extent of 
toxicity were based upon the same critical value used in the amphipod tests (i.e., <80% of 
control response). 

Microbial Bioluminescence (Microtox) - Organic Solvent Extract  

MicrotoxTM data were analyzed using the computer software package developed by Microbics 
Corporation to determine concentrations of the extract that inhibit luminescence by 50% (EC50).  
This value was then converted to mg dry weight using the calculated dry weight of sediment 
present in the original extract.  To determine significant differences of samples from each 
station, pair-wise comparisons were made between survey samples and results from Redfish Bay 
control sediments using analysis of variance (ANOVA).  Concentrations tested were expressed 
as mg dry weight based on the percentage extract in the 1 ml exposure volume and the calculated 
dry weight of the extracted sediment.  Statistical comparisons among treatments were made 
using ANOVA and Dunnett’s one-tailed t-tests on the log transformed data with the aid of SAS 
(SAS, 1989).   

Three critical values were used to estimate the spatial extent of toxicity in these tests.  First, a 
value of <80% of Redfish Bay controls (equal to 8.5 mg/ml) was used; i.e., equivalent to the 
values used with the amphipod and urchin tests.  Second and third, values of <0.51 mg/ml and 
<0.06 mg/ml calculated in the 1997 northern Puget Sound study were used, based upon the 
frequency distribution of MicrotoxTM data from NOAA’s surveys nationwide (as per Long et al., 
1999a). 

Human Reporter Gene System (Cytochrome P450) Response - Organic Solvent Extract  

Microsoft Excel 5.0 was used to determine the mean HRGS response and the 99% confidence 
interval of the B[a]P equivalent values for all 100 samples.  Mean responses determined for all 
100 samples were compared to the upper prediction limits calculated in the 1997 northern Puget 
Sound study (Long et al., 1999a): >11.1 µg/g and >37.1 µg/g.  The value of 11.1 µg/g was 
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viewed as the upper end of the range in background values in this test, while the value of 37.1 
µg/g was viewed as the threshold for elevated, possibly biological relevant, concentrations. 

Incidence and Severity, Spatial Patterns and Gradients, and Spatial Extent of Sediment 
Toxicity  

The incidence of toxicity was determined by dividing the numbers of samples identified as either 
significantly different from controls (i.e., "significantly toxic") or significantly different from 
controls and <80% of control response (i.e., “highly toxic”) by the total number of samples 
tested (i.e., 100).  Severity of the responses was determined by examining the range in responses 
for each of the tests and identifying those samples with the highest and lowest responses.  Spatial 
patterns in toxicity were illustrated by plotting the results for each sampling station as symbols 
or histograms on base maps of each major region.  

Estimates of the spatial extent of toxicity were determined with cumulative distribution functions 
in which the toxicity results from each station were weighted to the dimensions (km2) of the 
sampling stratum in which the samples were collected (Schimmel et al., 1994).  The size of each 
stratum (km2) was determined by use of an electronic planimeter applied to navigation charts, 
upon which the boundaries of each stratum were outlined (Table 1).  Stratum sizes were 
calculated as the averages of three trial planimeter measurements that were all within 10% of 
each other.  A critical value of less than 80% of control response was used in the calculations of 
the spatial extent of toxicity for all tests except the cytochrome P450 HRGS assay.  That is, the 
sample-weighted sizes of each stratum in which toxicity test results were less than 80% of 
control responses were summed to estimate the spatial extent of toxicity.  Additional critical 
values described above were applied to the MicrotoxTM and cytochrome P450 HRGS results. 

Concordance Among Toxicity Tests 

Non-parametric, Spearman-rank correlations were determined for combinations of toxicity test 
results to quantify the degree to which these tests showed correspondence in spatial patterns in 
toxicity.  None of the data from the four toxicity tests were normally distributed, therefore, non-
parametric tests were used on raw (i.e., nontransformed) data.  Both the correlation coefficients 
(rho) and the probability values (p) were calculated.  

Chemical Analyses 
Spatial Patterns and Spatial Extent of Sediment Contamination 

Chemical data from the sample analyses were plotted on base maps to identify spatial patterns, if 
any, in concentrations.  The results were shown with symbols indicative of samples in which 
effects-based numerical guideline and criteria concentrations were exceeded.  The spatial extent 
of contamination was determined with cumulative distribution functions in which the sizes of 
strata in which samples exceeded effects-based, sediment quality values were summed.   

Three sets of chemical concentrations were used as critical values: the SQS and CSL values 
contained in the Washington State Sediment Management Standards (Chapter 173-204 WAC) 
and the Effects Range-Median (ERM) values developed by Long et al. (1995) from NOAA’s 
national sediment data base (Appendix D).  Two additional measures of chemical contamination 
also examined and considered for each sample were the Effects Range-Low (ERL) values 
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developed for NOAA (Long et al., 1995), and the mean ERM quotient (Long and MacDonald, 
1998).  Samples with chemical concentrations greater than ERLs were viewed as slightly 
contaminated as opposed to those with concentrations less than or equal to the ERLs, which were 
viewed as uncontaminated.  Mean ERM quotients were calculated as the mean of the quotients 
derived by dividing the chemical concentrations in the samples by their respective ERM values.  
The greater the mean ERM quotient, the greater the overall contamination of the sample as 
determined by the concentration of 25 substances.  Mean ERM quotient values of 1.0 or greater, 
equivalent to ERM unity, were independently determined to be highly predictive of acute 
toxicity in amphipod survival tests (Long and MacDonald, 1998).  Mean SQS and CSL quotients 
were determined using the same procedure.  Spatial patterns in chemical concentrations were 
depicted on base maps using symbols to indicate stations in which any (i.e., one or more) of the 
SQS, CSL, or ERM vales were exceeded.  The same sets of values were used to calculate the 
spatial extent of contamination (as area and percentage of total area).  The area and percentage of 
area were calculated in which one or more criteria or guidelines were exceeded.  Areas were not 
double counted when more than one chemical substance exceeded these values.  The mean 
ERM-, SQS-, and CSL-quotients were used to identify relationships between the concentrations 
of mixtures of chemicals and both the degree of toxicity and possible benthic impacts. 
 
Chemistry/Toxicity Relationships 
 
Chemistry/toxicity relationships were determined in a multi-step sequence.  First, the 
concentrations of different groups of chemicals were normalized to their respective ERM values 
(Long et al., 1995) and to their Washington State SQS and CSL values (Washington State 
Sediment Management Standards – Ch. 173-204 WAC), generating mean ERM, SQS, and CSL 
quotients.  Non-parametric, Spearman-rank correlations were then used to determine if there 
were relationships between the four measures of toxicity and these normalized mean values 
generated for the different groups of chemical chemicals.  
 
Second, Spearman-rank correlations were also used to determine relationships between each 
toxicity test and each physical/chemical variable.  The correlation coefficients and their 
statistical significance (p values) were recorded and compared among chemicals to identify 
which chemicals co-varied with toxicity and which did not.  For many of the different 
semivolatile organic substances in the sediments, correlations were conducted for all 100 
samples, using the limits of quantitation for values reported as undetected.  If the majority of 
concentrations were qualified as either estimates or below quantitation limits, the correlations 
were run again after eliminating those samples.  No analyses were performed for the numerous 
chemicals whose concentrations were below the limits of quantitation in all samples.  

Third, for those chemicals in which a significant correlation was observed, the data were 
examined in scatterplots to determine whether there was a reasonable pattern of increasing 
toxicity with increasing chemical concentration.  Also, chemical concentrations in the 
scatterplots were compared with the SQS, CSL, and ERM values to determine which samples, if 
any, were both toxic and had elevated chemical concentrations.  The concentrations of un-
ionized ammonia were compared to lowest observable effects concentrations (LOEC) 
determined for the sea urchin tests by the USGS (Carr et al., 1995) and no observable effects 
concentrations (NOEC) determined for amphipod survival tests (Kohn et al., 1994). 
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The objectives of this study did not include a determination of the cause(s) of toxicity or benthic 
alterations.  Such determinations would require the performance of toxicity identification 
evaluations and other similar research.  The purpose of the multi-step approach used in the study 
was to identify which chemicals, if any, showed the strongest concordance with the measures of 
toxicity and benthic infaunal structure. 

Correlations were determined for all the substances that were quantified, including trace metals 
(both total and partial digestion), metalloids, un-ionized ammonia (UAN), percent fines, total 
organic carbon (TOC), chlorinated organic hydrocarbons (COHs), and polynuclear aromatic 
hydrocarbons (PAHs).  Concentrations were normalized to TOC where required for SQS and 
CSL values.   

Those substances that showed significant correlations were indicated with asterisks (*= p<0.05, 
** = p<0.01, ***= p<0.001, and ****= p<0.0001) depending upon the level of probability.  A 
Bonferroni's adjustment was performed to account for the large number of independent variables 
(157 chemical chemicals).  This adjustment is required to eliminate the possibility of some 
correlations appearing to be significant by random chance alone. 

Benthic Community Analyses 

All benthic infaunal data were reviewed and standardized for any taxonomic nomenclatural 
inconsistencies by Ecology personnel using an internally developed standardization process. 
With assistance from the taxonomists, the final species list was also reexamined for 
identification and removal of taxa that were non-countable infauna (Appendix E).  This included 
(1) organisms recorded with presence/absence data, such as colonial species, (2) meiofaunal 
organisms, and (3) incidental taxa that were caught by the grab, but are not a part of the infauna 
(e.g., planktonic forms).  

A series of benthic infaunal indices were then calculated to summarize the raw data and 
characterize the infaunal invertebrate assemblages identified from each station.  Indices were 
based upon all countable infaunal taxa only.  Five indices were calculated, including total 
abundance, major taxa abundance, taxa richness, Pielou’s evenness (J’), and Swartz’s 
Dominance Index (SDI).  These indices are defined in Table 5. 

Benthic Community/Chemistry and Benthic Community/Toxicity Analyses 

Nonparametric Spearman-rank correlation analyses were conducted among all benthic indices, 
chemistry, and toxicity data.  The correlation coefficients (rho values) and their statistical 
significance (p values) were recorded and examined to identify which benthic indices co-varied 
with toxicity results and chemistry concentrations.  Comparisons were made to determine 
similarities between these correlation results and those generated for the chemistry/toxicity 
correlation analyses.   

Sediment Quality Triad Analyses 

Following the suggestions of Chapman (1996), data from the chemical analyses, toxicity tests, 
and benthic analyses were compiled to identify the sampling locations with the highest and 
lowest overall sediment quality and samples with mixed or intermediate results.  The percent 
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spatial extent of sediment quality was computed for stations with four combinations of 
chemical/toxicity/benthic results.  Highest quality sediments were those in which no chemical 
concentrations exceeded numerical guidelines or criteria, toxicity was not apparent in any of the 
tests, and the benthos included relatively large numbers of organisms and species, and pollution-
sensitive species were present.  Lowest quality sediments were those with chemical 
concentrations greater than any of the sediment quality values (i.e., ERM, SQS, or CSL), toxicity 
in at least one of the tests, and a relatively depauperate benthos or a large number of pollution-
tolerant species were present.  Two intermediate categories of sediment quality were also 
identified, including sediments with one of the three parameters (i.e., chemistry, toxicity, or 
benthos) displaying degraded conditions; and sediments with two of the three parameters 
indicating degraded conditions. 

The benthic data analyses and interpretations presented in this report were intended to be 
preliminary and general.  Estimates of the spatial extent of benthic alterations are not made due 
to the lack of widely accepted critical values for calculated benthic indices at this time.  A more 
thorough examination of the benthic infauna communities in central Puget Sound and their 
relationship to sediment characteristics, toxicity, and chemistry will be presented in future 
reports.  Conclusions drawn from these data were a function, in part, of the sampling design 
selected for the study, the types of laboratory tests and analyses that were selected, and the types 
of statistical analyses that were applied to the data.  Obviously, other conclusion may have been 
formed I other procedures and methods had been used in the survey. 
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Results 
A record of all field notes and observations made for each sediment sample collected is 
presented in Appendix F.  The results of the toxicity testing, chemical analyses, and benthic 
infaunal abundance determination are reported in various summarized tables in this section of 
the report and in the appendices.  Due to the large volume of data generated, some raw data have 
not been included in this report.  All raw data can be obtained from Ecology’s Sediment 
Monitoring Team database or Ecology’s Sediment Management Unit SEDQUAL database.  The 
web site addresses linking to both these databases are located on the inside cover of this report. 

Toxicity Testing 
Incidence and Severity of Toxicity 
Amphipod Survival - Solid Phase 

Amphipod survival tests were run in 11 batches corresponding to the shipments that were 
received from the field crew.  Sample storage times were less than 10 days in all cases.  
Measures of test water pH, dissolved oxygen, temperature, and ammonia were within acceptable 
limits in all but a few samples.  In a few samples the concentrations of un-ionized ammonia were 
slightly elevated above toxicity thresholds, but amphipod survival was not significantly different 
from controls in these samples.  The mean LC50 concentration in 12 tests of sodium dodecyl 
sulfate (SDS) in water was 10.49mg/L.  LC50s for 9 of 12 tests were within the warning limits of 
two standard deviations of the historical mean (i.e., 8.24 to 12.73 mg/L).  Two LC50s were 
between the warning limits and control limits (5.99 to 14.98 mg/L) and one LC50 was outside 
the controls limit (LC50 of 15.78mg/L in test number 2).  Toxicity in test samples was not 
attributable to poor animal viability. 

Mean performance control survival ranged from 81% to 98% in the 11 test batches.  Because of 
relatively low survival in four test runs (81%, 87%, 90%, and 90%), some samples were re-
tested in four additional batches.  During the summer of 1999, severe drought and high 
temperatures may have caused native amphipods in Narragansett Bay to experience high degrees 
of heat-related stress.  These conditions were observed and reported by many other investigators 
and laboratories during the same time period.  Survival in the negative controls in the re-tested 
batches always improved to ≥ 87% and all of the samples that were re-tested invariably were 
non-toxic.  Overall, the results of these tests were accepted and treated as reliable data. 

Results of the amphipod survival tests for the 100 southern Puget Sound sediment samples are 
reported in Table 6.  Mean survival in the 100 test samples ranged from 77% to 99%.  When 
expressed as percentages of control survival, the results ranged from 81% to >100%.  Mean 
survival among samples collected within each stratum was not significantly lower than in 
controls.  Survival in three samples (those from stations 245 (Pickering Passage/Squaxin Island), 
254 (Nisqually Reach), and 294 (Thea Foss Waterway)) was statistically different from mean 
control survival (i.e., the response was statistically significant in 3 samples) however, control-
adjusted survival invariably exceeded 80% (i.e., the incidence of “highly toxic” samples in this 
study was 0%).  Control-adjusted survival was 81%, 92%, and 90% respectively in the batches 
of test samples in which statistically significant responses were recorded.  The incidence of 
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statistically significant toxicity in these samples (3%) was lower than observed in central Puget 
Sound in 1998 (7%) and in northern Puget Sound in 1997 (13%).  Overall, the combined 
incidence of significant toxicity was 7.7% (23 of 300 samples).  Only one sample (i.e., 0.3%) 
from the 300 samples tested throughout Puget Sound (station 167, Port Washington Narrows) 
indicated “highly toxic” characteristics. 

Sea Urchin Fertilization – Pore Water 

Porewater tests were run in two batches, consisting of samples from stations 206-253 and 
stations 254-305, respectively.  Samples were extracted within 10 days of the collection date.  
Salinity adjustments were required with 19 samples to attain 30±1 ppt.  Hydrogen sulfide 
concentrations in 98 of the samples were below the detection limit of 0.01 mg/L.  In samples 242 
and 243 they were 12 and 8.5 mg/L and dissolved oxygen concentrations fell below 80% 
saturation.  These samples were aerated by stirring to drop the sulfide levels to 0.5 and 0.05 
mg/L, respectively.  Porewater oxygen concentrations for the remaining samples ranged from 6.2 
to 7.9 mg/L, equivalent to 80% and 102% saturation.  Values for pH ranged from 6.8 to 7.8 in all 
samples.  The environmental data indicated test conditions were acceptable. Fertilization success 
was 92.9% and 98.7% in the tests of 100% porewater from the Redfish Bay reference site in the 
two test runs, indicating the test animals were viable.  EC50 concentrations determined for 
sodium dodecyl sulfate were similar to results from the previous phases of the survey (mean of 
2.31 mg/L and range of 2.09 to 2.56 mg/L in the first test run and mean of 3.69 mg/L and range 
of 3.40 to 4.01 mg/L in the second run). 

Total ammonia (TAN) concentrations in the porewater samples ranged from 0.16 to 17.8 mg/L 
and un-ionized ammonia (UAN) concentrations ranged from 1.4 to 398.6 ug/L.  The LOEC for 
UAN for the fertilization test with Arbacia punctulata is 800 ug/L.  No equivalent LOEC has 
been determined for S. purpuratus.  Only one sample had an UAN concentration greater than 
100 ug/L.  The UAN concentration of 398.6 ug/L was recorded in sample 242 (Port of Olympia) 
and it was very toxic in all three porewater concentrations.  The next highest concentration (85.2 
ug/L) occurred in sample 213 (inner Port Gamble Bay).  That sample was not toxic.  The third 
highest concentration (81.2 ug/L) occurred in sample 270 (Gig Harbor).  That sample also was 
not toxic. 

Among the 100 samples, eleven were classified as significantly toxic (i.e., significantly different 
from reference at alpha<0.05) in tests of 100% porewater (Table 7).  Percent fertilization success 
was less than 80% of reference in eight of the samples.  Therefore, the incidence of significant 
toxicity in tests of 100% porewater was 11% and the incidence of highly toxic samples (i.e., 
percent fertilization <80% of reference) was 8% in 100% porewater.  In comparison, the 
incidence of highly toxic samples in tests of 100% porewater was 15% in northern Puget Sound 
and 9% in central Puget Sound.  Overall, the incidence of highly toxic responses in 100% 
porewater was 11% (32 of 300). 

The toxicity of the samples was most severe in two samples (242 and 243 from Port of Olympia) 
in which fertilization success was 0.4% and 0.0%, respectively, in tests of 100% porewater.  
These two samples were also very toxic in tests of diluted porewater (0.0 and 0.4% in 50% 
porewater, and 0.2% and 3.8% fertilization in 25% porewater, respectively).  The response was 
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relatively severe also in samples 240 (inner Eld Inlet) and 294 (Commencement Bay waterways) 
in which fertilization success was 7.2% and 28.4%, respectively, in tests of 100% porewater. 

In most cases, percent fertilization success increased as the pore waters were diluted from 100% 
to 50% and to 25%.  However, there were a few samples in which this usual pattern was not 
observed.  Statistically significant results were observed in tests of 50% and/or 25% porewater, 
but not in 100% porewater, in samples 228, 229, 230, 231, 248, and 250.  These unusual results 
probably were a function of variability in the biological responses. 

Microbial Bioluminescence (Microtox™)  

The mean EC50 concentration for tests of the Redfish Bay control was 10.9 mg/L, similar to the 
value determined in the 1998 survey of central Puget Sound (10.6 mg/L).  However, both of 
these results were an order of magnitude different from that of the 1997 survey of northern Puget 
Sound (102.9 mg/L), illustrating the unusual condition of the Redfish Bay control sample in 
1997.  Because of the anomalous control results in 1997, 80% and 90% LPL were calculated 
from a national data set for comparison with 1997 data.  To maintain consistency in sample 
analysis and reporting, the 1998 and 1999 data are presented as significant deference from 
controls and less than 80% of controls, and in comparison to the 80% and 90% LPLs. 

Microtox EC50 values were significantly different from the controls and less than 80% of 
controls in 73 samples (i.e., 73% incidence of highly toxic samples) (Table 8).  In the 1997 and 
1998 phases of the study, the percentages of highly toxic samples were 97% and 57%, 
respectively.  Again, the data from 1997 reflect the unusual condition of the Redfish Bay control 
sample at that time.   

EC50 values ranged from a mean of 0.31 mg/L (Port of Olympia) to 175.30 mg/L (East 
Passage).  Expressed as percentages of controls, the responses ranged from 3% to 1608% of the 
Redfish Bay samples.  With respect to the critical 80% and 90% lower prediction limit (LPL) 
values derived for this test during the 1997 survey of northern Puget Sound sediments (Long et 
al., 1999a), there were three samples with responses of less than 0.51 mg/L (80% LPL).  The 
EC50 values for samples 243 (Port of Olympia), 293 (N.E. Commencement Bay), and 294 (Thea 
Foss Waterway) were 0.31, 0.43, and 0.32 mg/L and represented the most severe response in this 
test.  None of the results were less than 0.06 mg/L (90% LPL) in any of the 300 samples tested 
from Puget Sound.  There were 18 samples with responses >100% of the controls, whereas in 
1998 there were 35 samples with comparable results. 

Human Reporter Gene System (Cytochrome P450) Response - Organic Solvent Extract 

The cytochrome P450 HRGS toxicity test responses among the 100 samples ranged from 1.5 
(station 280, East Passage) to 1994.9 µgB[a]Peq/g (station 294, Thea Foss Waterway) (Table 8).  
Statistical significance of these data compared to the controls was not determined.  However, 
there were 43 samples in which the response was <11.1 µg/g (the 80% Upper Prediction Limit, 
UPL) critical threshold derived for the 1997 northern Puget Sound study (Long et al., 1999a), 57 
in which responses were > 11.1 µg/g, and 17 with responses greater than 37.1 µg/g (the 90% 
UPL critical threshold).  In the 1997 survey of northern Puget Sound, there were 84, 16, and 4 
samples in these categories.  In the 1998 survey of central Puget Sound, there were 38, 62, and 
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27 samples in these categories.  Thus, the data indicated that overall, induction was slightly 
higher in southern Puget Sound than in the central region and considerably lower in the northern 
region than in the other two regions.  

HRGS induction responses were most severe in samples 294, 295, and 296 from Thea Foss 
Waterway near Tacoma.  Enzyme induction in these samples was 1995, 529, and 356 ug/g, 
respectively.  Other samples in which the response exceeded 100 µg/g were collected at stations 
206 (Port Ludlow), 243 (Port of Olympia), 287, 293, 299, 303, and 304 (all in Commencement 
Bay or adjoining waterways).  The samples with the lowest responses (<2.0 µg/g) were collected 
at stations 245 (Pickering Passage), 268 (Hale Passage), and 280 (East Passage). 

As a corollary to and verification of the cytochrome P450 HRGS toxicity test results, Columbia 
Analytical Services performed further chemical testing on a select number of the southern Puget 
Sound samples (Jack Anderson, CAS, personal communication).  Tier II testing of ten samples 
was conducted with responses recorded at 6 hours and 16 hours to identify the contribution of 
PAHs and dioxin/furan chemicals to the enzyme induction.  Samples from stations 280, 281, 
287, 290, 291, 294, 295, 303, 304, and 305 were selected for these assays because they provided 
a distinct response gradient from the Thea Foss Waterway seaward into East Passage of Puget 
Sound.  In all samples, the response was much greater at 6 hours than at 16 hours, indicating the 
response was primarily driven by the presence of PAH chemicals and minimally attributable to 
the chlorinated chemicals.  

In subsequent Tier III testing of samples 294, 303, and 304, the concentrations of total PAHs 
(sum of 27 chemicals) were determined to be 57, 6, and 2 µg/g dry wt.  The sums of total PCB 
congeners in these samples were 674, 137, and 68 ng/g, respectively.  Sums of total planar 
congeners were 43, 15, and 7 ng/g, respectively.  The data from the Tier II and Tier III tests, 
collectively, confirmed that the samples from Thea Foss Waterway were highly contaminated 
relative to the others and had high concentrations of PAHs.  The degree of contamination and 
enzyme induction observed in these samples decreased steadily in samples collected in outer 
Commencement Bay and East Passage. 

Spatial Patterns and Gradients in Toxicity 

Spatial patterns in toxicity are illustrated in three sets of figures, including maps for the 
amphipod and urchin test results (Figures 4-7), Microtox results (Figures 8-11), and 
cytochrome P450 HRGS test results (Figures 12-15).  Amphipod and urchin test results are 
displayed as symbols keyed to the statistical significance of the responses.  Stations are shown in 
which amphipod survival was not significantly different from CLIS controls (p>0.05, i.e., non-
toxic), or was significantly different from controls (p<0.05, i.e., significantly toxic), or was 
significantly different from controls (p<0.05) and less than 80% of control survival, (i.e., highly 
toxic).  Also, stations are shown on the same figures in which urchin fertilization (100% pore 
water) was not significantly different from Redfish Bay controls (p>0.05, i.e., non-toxic), or was 
significantly different from controls (p<0.05) and less than 80% of controls (i.e., highly toxic) in 
100% pore water only, or in 100% and 50% porewater concentrations, or in 100% and 50% and 
25% porewater concentrations.  Samples in which significant results were observed in all three 
porewater concentrations were considered the most toxic. 
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Microtox and cytochrome P450 HRGS data are shown as histograms for each station.  
Microtox results are expressed as the mean EC50 (mg/ml), therefore, as in the report for the 
1997 and 1998 surveys, the height of the bar decreases with increasing toxicity. Dark bars 
indicate non-significant results.  In the cytochrome P450 HRGS assays, data are expressed as 
benzo[a]pyrene equivalents (µg/g) of sediment.  For these results, high values indicate the 
presence of toxic chemicals, i.e., the height of the bar increases with increasing toxicity. 

Amphipod Survival and Sea Urchin Fertilization 

None of the results of the amphipod survival tests were significant in the Hood Canal and 
vicinity (Figure 4).   In the sea urchin tests, results were significant in tests of three samples at 
100% porewater concentrations.  Fertilization success was reduced in one sample from Port 
Gamble Bay (station 214) and in two samples from Dabob Bay (219 and 220).  None of the 
results were significant at diluted porewater concentrations.   

In the many inlets and channels of southern Puget Sound, most samples were similarly non-toxic 
in these two tests (Figure 5).  One of the samples (station 245, Pickering Passage) was 
significantly, but not highly toxic in the amphipod survival tests, and only four were toxic in the 
sea urchin tests.  Toxicity was recorded in one sample from Totten Inlet (station 235), one 
sample from Eld Inlet (station 240), and two samples from Port of Olympia (station 242, 243).  
The two samples from Port of Olympia were the most toxic in the urchin tests.  Fertilization 
success in these two samples was 0% in 100% porewater, 0% to 0.4% in 50% porewater, and 
0.2% to 3.8% in 25% porewater.  The high degree of toxicity observed in Port of Olympia 
diminished rapidly seaward into Budd Inlet, where none of the samples were toxic. 

In the Case Inlet/Carr Inlet/Nisqually Reach area, only one sample was toxic in the amphipod 
tests (station 254) and none were toxic in the urchin tests (Figure 6).  Amphipod survival was 
92% of controls in the sample from station 254.  Although classified as “significantly toxic” (i.e., 
significantly different from survival in controls), mean survival was relatively high in this 
sample.  Results were similar in the samples collected from Commencement Bay and vicinity 
(Figure 7).  Toxic responses were recorded in one sample (station 294 at the head of Thea Foss 
Waterway) in both of the tests.  The results of the urchin tests were significant in both 100% and 
50% porewater concentrations. 

Microbial Bioluminescence (Microtox™) 

As indicated by the tall bars of the histogram (Figure 8-11), most of the samples from Hood 
Canal and vicinity were not toxic in this test; however, toxic responses were recorded in all six 
samples collected in Port Ludlow and Port Gamble Bay (Figure 8).  Also, two samples each from 
both the seaward (stations 209, 211) and the landward (stations 224, 225) ends of the canal 
indicated toxic responses.  None of the samples from the Quilcene Bay/Dabob Bay area were 
toxic in this test. 

Samples from the inlets of southern Puget Sound were considerably different from those from 
Hood Canal – all except one (station 246) were significantly toxic (Figure 9).  Diminished 
bioluminescence activity (indicated by low EC50 concentrations) was most apparent in the 
samples collected in inner Oakland Bay near the city of Shelton and in those from the Port of 
Olympia.  EC50 concentrations recorded for the three samples from the Port of Olympia were 
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among the lowest for all 100 samples tested.  Responses were significant in samples from the 
other South Sound inlets, but not nearly as severe as in those from Oakland Bay and the Port of 
Olympia. 

Toxic responses diminished in the strata sampled farther to the east (i.e., seaward).  EC50 
concentrations were somewhat higher and four of the samples were non-toxic in the Case 
Inlet/Carr Inlet/Nisqually Reach area (Figure 10). 

Toxic responses were recorded in most samples from Commencement Bay and adjoining 
waterways (Figure 11).  The most severe responses were apparent in samples from the 
industrialized waterways of Tacoma.  The severity decreased incrementally seaward into the 
outer reaches of the bay and, again, into the East Passage of Puget Sound.  Samples from stratum 
30 (Thea Foss Waterway), stratum 31 (Middle Waterway), and stratum 33 (Hylebos Waterway) 
were among the most toxic in the study.  Toxicity in these tests was also apparent in samples 
from inner Quartermaster Harbor and Gig Harbor, but not in samples from Colvos Passage and 
all except one sample from East Passage. 

Human Reporter Gene System (Cytochrome P450)  

As opposed to the Microtox tests, exposures to contaminated samples in these tests are 
indicated with increasing responses.  Responses greater than 37.1 µg/g benzo[a]pyrene 
equivalents are considered elevated.  Most samples from Hood Canal and vicinity did not cause 
elevated responses in this test.  However, the sample from station 206 in Port Ludlow produced a 
response equivalent to 103 µg/g (Figure 12).  The sample from station 214 collected in Port 
Gamble provided a response of 37 µg/g.  Otherwise, the samples from this area indicated 
background conditions. 

HRGS induction was elevated in one sample (station 227) from Oakland Bay and two samples 
(242, 243) from the Port of Olympia (Figure 13).  In both cases, the degrees of induction 
declined rapidly in stations sampled seaward of these inner harbor areas.  Stations that were 
sampled elsewhere in the South Sound inlets showed background responses in these tests.  
Similarly, relatively low induction levels (i.e., <37.1 µg/g) were observed in all samples from 
strata 16-21 (Figure 14).   

In contrast, conditions in the waterways of Commencement Bay were considerably different than 
those elsewhere in the study area.  HRGS responses were extremely high in the three samples 
from stratum 30 (Thea Foss Waterway), ranging from 356 µg/g to 1995 µg/g (Figure 15).  These 
results rank among the highest degrees of response observed in NOAA studies nationwide and 
exceeded the levels of response in samples tested from Everett Harbor and the lower Duwamish 
River Waterways (Long, et al. 1999a, 2000).  HRGS induction also was very high in the samples 
from strata 31 and 33, in all cases exceeding 37.1 µg/g.  Response levels were also high at 
stations 287 off the mouth of Thea Foss Waterway and station 293 between Browns Point and 
the mouth of Hylebos Waterway.  Although the degree of response in these assays generally 
diminished seaward into the East Passage, the sample from station 278 off Browns Point 
indicated elevated induction.  In Gig Harbor, the HRGS response was elevated in station 271 and 
somewhat lower (31-33 µg/g) in the other two samples from that bay.  Samples from 
Quartermaster Harbor and northern Colvos Passage indicated background conditions.   
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Summary 

Several spatial patterns in toxicity were apparent in this survey area.  First and foremost, toxic 
responses in the two tests of organic solvent extracts were most severe in some of the 
industrialized waterways of Commencement Bay at Tacoma.  The HRGS responses in the three 
samples from Thea Foss Waterway were very high.  They were accompanied by significant 
toxicity in the Microtox tests in all three samples and significant responses in both the 
amphipod and urchin tests in one of the samples.  The degree of toxicity in Hylebos and Middle 
Waterways was lower, but, nonetheless, represented conditions considerably different from those 
reported elsewhere in the survey area.  The degree of toxicity in the Commencement Bay 
waterways incrementally and gradually diminished seaward into the outer reaches of the bay and 
decreased again into East Passage. 

Other industrialized harbors in which sediments induced toxic responses on smaller scales 
included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port 
Gamble.  In each case, the toxic responses diminished sharply with increasing distance from 
these harbors.  Sediments in most of the South Sound inlets and passages were relatively 
homogeneous, i.e., not toxic in most of the tests.  The patterns of toxicity in the southern Puget 
Sound, i.e., toxic conditions restricted mainly to industrialized harbors and improving quickly 
into more rural or undeveloped areas or into the main basin, also were observed in the studies of 
northern and central Puget Sound. 

Spatial Extent of Toxicity 

The spatial extent of toxicity was estimated for each of the four tests performed in central Puget 
Sound with the same methods used in the 1997 and 1998 surveys.  The critical values used in 
1997 and 1998 also were applied to the 1999 data.  The 33 strata were estimated to cover a total 
of about 858 km2 in the southern Puget Sound survey area (Table 9).  

Control-adjusted amphipod survival was greater than 80% in all samples, therefore, the spatial 
extent of toxicity was 0.0% (Table 9).  Urchin fertilization was less than 80% in samples that 
represented 6% of the area with tests of 100% porewater concentration, 0.5% with tests of 50% 
porewater, and 0.3% with tests of 25% porewater.   

The spatial extent of toxicity using EC50's <80% of controls as the critical value, was 61% in the 
Microtox tests.  However, relative to the statistically-determined 80% and 90% lower prediction 
limits of the Microtox database, the spatial extent of toxicity was estimated as 0.2% and 0.0%, 
respectively.  In the cytochrome P450 HRGS assays, samples in which the responses exceeded 
11.1 µg/g and 37.1 µg/g (the 80% and 90% upper prediction limits of the existing database) 
represented about 329 km2 and 43 km2, respectively.  These areas were equivalent to 38% and 
5%, respectively, of the total survey area. 

Concordance among Toxicity Tests 

Non-parametric Spearman-rank correlations were determined for combinations of the four 
different toxicity tests to determine the degree to which the results co-varied and, therefore, 
showed the same patterns.  It is critical with these correlation analyses to identify whether the 
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coefficients are positive or negative.  Amphipod survival, urchin fertilization success and 
microbial bioluminescence EC50’s improve as sediment quality improves.  However, 
cytochrome P450 HRGS responses increase as sediment quality deteriorates.  Therefore, in the 
former three tests, positive correlation coefficients suggest the tests co-varied with each other.  
In contrast, co-variance of the other tests with results of the cytochrome P450 HRGS assays 
would be indicated with negative signs. 

The results showed a very strong negative correlation between microbial bioluminescence and 
cytochrome P450 HRGS induction (Table 10).  That is, HRGS induction increased as the 
Microtox EC50’s decreased, meaning that the results of these two tests were highly 
concordant.  These two tests were performed on subsamples of the same organic solvent extracts.  
Often, they indicated that samples from the industrialized harbors such as the Commencement 
Bay waterways and Port of Olympia were most contaminated and that most samples from more 
rural inlets and passages of southern Puget Sound were indicative of background or reference 
conditions.  Similarly, urchin fertilization was negatively correlated with HRGS induction, but 
the correlation was not as strong as it was between Microtox results and HRGS induction. 

Chemical Analyses 
Results of the sediment chemistry analyses conducted for this survey are presented in the 
following sections.  Due to the large volume of data generated, brief summaries of the results are 
included below, while either raw or summary data tables are included in the Appendices.  A 
record of all field notes and observations made for each sediment sample collected is 
summarized in Appendix F.  As stated earlier, all raw data can be obtained from the Ecology 
Sediment Monitoring Team’s web site.  The web site address is located on the inside cover of 
this report. 

Grain Size 

The grain size data are reported in Appendix G, Table 1, and frequency distributions of the four 
particle size classes, % gravel, % sand, % silt, and % clay, are depicted for all stations in 
Appendix G, Figure 1.  From these data, sediment from the 100 stations were characterized into 
four groups (sand, silty sand, mixed sediments, and silt-clay) based on their relative proportion 
of % sand to % fines (silt + clay) (Table 11).  Among the 100 samples from southern Puget 
Sound, 24 were comprised primarily of sand, 12 of silty sand, 40 had mixed sediments, and 24 
were comprised primarily of fine-grained (silt-clay) particles. 

Total Organic Carbon (TOC), Temperature, and Salinity 

Total organic carbon (TOC) and temperature measurements taken from the sediment samples, 
and salinity measurements collected from water in the grab, are displayed in Appendix G, Table 
2.  Values for TOC ranged between 0.06 and 7.9%, with a mean of 1.8% ±1.3%.  Four of the 100 
stations had TOC values lower than 0.2% which should be considered when comparing TOC 
normalized data from these stations to Washington Sate sediment criteria (Michelsen, 1992).  
Temperature ranged between 11 and 15 °C, with a mean of 11.7 ±1.0.  Salinity values ranged 
between 23-32 ppt, with a mean of 29.1% ±2.1%. 
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Metals and Organics 

Appendix G, Table 3 contains summary data for the detected concentrations of metals and 
organic chemicals, including mean, median, minimum, maximum, and range values, as well as 
the total number of values, the number of undetected values, and the number of missing values. 
Chemicals which, at some or all stations, were undetected at the quantitation limits reported by 
the laboratory included 5 of 23 metals (strong acid digestion), 7 of 22 metals (hydrofluoric acid 
digestion method), 1 of 2 elements, 5 of 5 organotins, 24 of 24 organic chemicals quantified 
through BNA analyses, 27 of 46 low and high molecular weight polynuclear aromatic 
hydrocarbons, and all 58 chlorinated pesticides and polychlorinated biphenyl (PCB) chemicals. 

Spatial Patterns in Chemical Contamination 

The spatial (geographic) patterns in chemical contamination were determined by indicating the 
locations of sampling stations on maps in which numerical sediment quality guidelines and 
criteria (ERM, SQS, and CSL values) were exceeded (Figures 16-19).  The number and list of 
chemical chemicals that exceeded these guideline and criteria values at each station, along with 
the mean ERM quotient for each station, are listed in Table12.  

Most samples had chemical concentrations that were low relative to the ERM, SQS, and CSL 
values (Table 12).  There were 80 samples in which all chemical concentrations were below all 
of these guidelines and criteria.  One or more chemical concentrations exceeded their respective 
ERL values in 82 samples, indicating at least a slight degree of contamination in these samples.  
One or more ERM values were exceeded in 9 samples.  One or more SQS values were exceeded 
in 17 samples and these concentrations exceeded the respective CSL values in 10 samples.  
There were 6 samples in which both the ERM values and the SQS (and in 3 cases, the CSL) 
values were exceeded.  As indicated by the high mean ERM quotients and the numbers of 
guidelines and criteria exceeded, several stations (294-296, 299, 303-305) from the industrialized 
waterways of Commencement Bay had the highest degrees of chemical contamination 
encountered in the survey. 

In the Hood Canal area (Figure 16, Table 12), there were three samples (one from Port Ludlow 
and two from Port Gamble Bay) in which one or more sediment quality values were exceeded.  
In station 207 (Port Ludlow), the concentration of naphthalene exceeded the SQS value. In Port 
Gamble Bay, silver was elevated in concentration in station 212, while several low molecular 
weight PAHs (LPAH) and the sum of LPAH were elevated in concentration relative to their 
respective ERM values in station 214. 

Relative to Hood Canal, the SQS and CSL values were exceeded more frequently in the samples 
from southern Puget Sound inlets (Figure 17, Table 12). The concentration of mercury exceeded 
the ERM, SQS and CSL values in the sample from station 235 (Totten Inlet).  Concentrations of 
benzoic acid, benzyl alcohol, and/or phenol exceeded SQS and CSL levels in the other samples 
from this region of the study area, including Budd Inlet and the Port of Olympia, Pickering 
Passage/Squaxin Island, and Henderson Inlet.  Bis(2-ethylhexyl) phthalate also exceeded the 
SQS value at station 243 in the Port of Olympia.  In addition, benzoic acid also was elevated in 
concentration in stations 260 (East Anderson Island) and 266 (Hale Passage) (Figure 18, Table 
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12).  Otherwise, most samples from the inlets of southern Puget Sound did not have elevated 
concentrations of any of the substances for which there are state criteria or NOAA guidelines. 

None of the samples collected in Colvos Passage, East Passage, Quartermaster Harbor, Gig 
Harbor, or outer Commencement had high chemical concentrations (Figure 19).  However, eight 
samples collected in the Tacoma waterways or off the Tacoma waterfront had chemical 
contaminant values exceeding ERM, SQS, and/or CSL levels.  The concentrations of LPAHs 
were relatively high in stations 287 (Commencement Bay shoreline), and 294-296 (Thea Foss 
Waterway).  The concentrations of many LPAHs and HPAHs were very high in the sample from 
station 294.  This sample also had elevated concentrations of PCBs, 2,4-dimethylphenol, lead, 
and mercury and a very high mean ERM quotient.   

The sample from station 299 (Middle Waterway) was contaminated with a mixture of PAHs and 
trace metals, but the samples collected nearby at stations 297 and 298 had considerably lower 
chemical concentrations (Figure 19, Table 12).  The chemical mixture in station 299 was similar 
to that in the contaminated samples from Thea Foss Waterway.  In contrast, the samples from 
Hylebos Waterway were primarily contaminated with PCBs and hexachlorobenzene (HCB), but 
not with the PAHs.  Also, phenol was elevated in concentration at station 304. 

Summary 

In summary, 20 of the 100 samples collected had one or more chemical concentrations that 
exceeded applicable guidelines or criteria.  Among these samples chemical contamination was 
highest in eight samples collected in or near the industrialized waterways of Commencement 
Bay.  Samples from the Thea Foss and Middle Waterways were primarily contaminated with a 
mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated 
with chlorinated organic hydrocarbons.  The remaining 12 samples with elevated chemical 
concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) 
phthalate, benzoic acid, benzyl alcohol, and phenol.  There was a distinct spatial pattern in 
contamination in Commencement Bay (i.e., high concentrations in the waterways diminished 
rapidly into the outer reaches of the bay).  However, there were no other equally clear gradients 
elsewhere in the study area. 

Spatial Extent of Chemical Contamination 

To estimate the spatial extent of chemical contamination, the numbers of samples were tallied in 
which ERM, SQS, and/or CSL values were exceeded.  Then, the percentages were calculated of 
the survey area that these samples represented for all substances for which state standards and /or 
NOAA guidelines were available (Table 13).  For some chemicals (e.g., phenols, phthalate 
esters), the data were qualified as “undetected” at practical quantitation limits that exceeded the 
chemical guideline and/or criteria values.  In these cases, the spatial extent of chemical 
contamination was recalculated after omitting the data that were so qualified (shown as “>QL 
only” on Table 13).  Calculations were performed both ways (i.e., by including, then omitting 
data at or below the quantitation limit) to be consistent with methods used in the 1997 and 1998 
reports and to quantify the significance of the qualified data. 
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Among the trace metals that were measured, the concentrations of mercury and nickel were 
elevated most frequently (Table 13).  With the exception of nickel, however, the samples with 
elevated concentrations of one or more trace metals represented less than 1% of the total survey 
area. Long et al. (1995), suggested that there was a limited degree of reliability in the ERM for 
nickel.  For all trace metals (excluding nickel), there were a total of 4 (ERM), 3 (SQS), and 3 
(CSL) samples that exceeded guidelines or criteria levels, encompassing a total of 0.84, 0.68, 
and 0.68%, respectively, of the total study area. 

Concentrations of individual LPAHs or the sum of LPAHs were elevated relative to the 
guidelines or standards in 1 to 6 samples located in Commencement Bay, Thea Foss and Middle 
Waterways, Port Ludlow, and Port Gamble Bay.  These samples represented from <0.01 to 
0.30% of the total study area.  High molecular weight PAHs were present in concentrations 
above standards and guidelines only in two stations from the Thea Foss Waterway and one from 
Middle Waterway in Tacoma, representing from <0.01 to 0.03% of the total study area. 

Concentrations of phenol exceeded SQS and CSL values in samples from the Port of Olympia, 
Henderson Inlet, and Hylebos Waterway (0.25 and 0.22% of the total study area, respectively), 
while concentrations of 2,4-dimethylphenol exceeded these values in the Thea Foss Waterway 
(0.01% of the total study area).  The samples in which the SQS values or CSL values were 
exceeded for one or more phenols (>QL only) represented about 0.26% and 0.24% of the survey 
area, respectively.  Similarly, the one sample (Thea Foss Waterway) with phthalate ester 
concentrations greater than the SQS values (>QL only) represented a small percentage of the 
total survey area (0.01%).  The concentrations of PCB chemicals were elevated in a few samples 
(>QL only), all from the Tacoma waterways.  Benzoic acid concentrations (>QL only) exceeded 
both the SQS and CSL values in 5 samples, representing 3.21% of the area.  Benzyl alcohol 
concentrations (>QL only) exceeded SQS and CSL values in 3.09 and 1.86% of the study area.  
Three samples had concentrations of hexachlorobenzene greater than the SQS, representing 
about 0.08% of the study area. 

The overall spatial extent of chemical contamination as gauged by the total number of chemical 
values exceeding one or more of the ERM, SQS, and CSL values, is summarized at the end of 
Table 13.  There were 9 samples in which one or more ERM values were exceeded by any 
amount (excluding nickel for which the ERM is least reliable).  These 9 samples represented 
about 1% of the total survey area.  In contrast, there were 17 and 10 samples in which one or 
more SQS or CSL values, respectively, were exceeded (>QL only).  Those samples represented 
about 7% and 5%, respectively, of the survey area. 

Summary 

The spatial extent of chemical contamination, expressed as the percent of the total study area in 
which a chemical concentration exceeded one or more of the state criteria or NOAA guidelines 
or criteria, was determined for the 54 chemicals for which these values exist.  In general, the 
majority of chemicals for which analyses were conducted on the 100 sediment samples from 
southern Puget Sound were measured at levels below state criteria and NOAA guidelines.  The 
samples in which chemical concentrations exceeded the criteria or guidelines tended to be 
isolated to a very small percentage (generally <1%) of the study area.  For all trace metals 
(excluding nickel), there were a total of 4 (ERM), 3 (SQS), and 3 (CSL) samples in which 
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guidelines or criteria levels were exceeded, encompassing a total of 0.84, 0.68, and 0.68%, 
respectively, of the total study area.  Significant metals contamination occurred in Port Gamble 
Bay, Totten Inlet, and in both the Thea Foss and Middle Waterways of Commencement Bay, and 
mercury was the most commonly found contaminant.  There were totals of 6, 4, and 1 samples 
with PAHs exceeding ERM, SQS, and CSL values, respectively, encompassing a total of 0.30, 
0.23, and <0.01% of the total study area.  Contaminants were again located in Port Gamble Bay 
and Commencement Bay, including both the Thea Foss and Middle Waterways.  PCB chemicals 
exceeded guidelines and criteria in 2 (ERM) and 3 (SQS) stations in the Thea Foss and Hylebos 
Waterways, representing 0.04 and 0.07% of the study area.  Other organic chemicals, including 
benzoic acid and benzyl alcohol exceeded SQS and CSL values in 5 or fewer samples, roughly 
3% or less of the study area, including stations in Budd Inlet, Port of Olympia, Henderson Inlet, 
E. Anderson Island, and Hale and Pickering Passages.  Hexachlorobenzene values exceeded the 
SQS value at all three stations in the Hylebos Waterway (0.08% of the study area). 

Relationships between Measures of Toxicity and Chemical Concentrations 

The associations between the results of the toxicity tests and the concentrations of potentially 
toxic substances in the samples were determined in several steps, beginning with simple, non-
parametric, Spearman-rank correlation analyses.  This step provided a quantitative method to 
identify which chemicals or chemical groups, if any, showed the strongest statistical 
relationships with the different measures of toxicity.  In the second step, some of the most 
statistically significant correlations were further examined in scatterplots.  Finally, where 
warranted by the data, the applicable sediment quality guidelines or state standards were shown 
on the scatterplots to identify which chemicals were elevated in concentration in the most toxic 
samples. 

Toxicity vs. Classes of Chemical Chemicals  
Spearman-rank correlation coefficients (rho) and probability (p) values for the four toxicity tests 
versus the concentrations of four different groups of chemicals, normalized to the respective 
ERM, SQS, and CSL values, are listed in Table 14.  As expected because of the narrow range in 
response, results of the amphipod survival tests were not significantly correlated with any of the 
classes of chemicals in the samples.  Sea urchin fertilization was weakly correlated (p values 
<0.05 or <0.01) mainly with classes of PAHs.  The strongest statistical correlations were 
between results of both the Microtox and HRGS tests and the concentrations of most chemical 
classes.  In particular, HRGS induction was correlated with concentrations of total (13) PAHs 
normalized to the ERM values (rho = 0.816, p<0.0001) and mean ERM quotients for 25 
individual substances (rho = 0.805, p<0.0001).  Both of these tests are known to be responsive to 
doses of PAHs and results such as these have been reported in previous studies in Puget Sound 
and elsewhere in NOAA’s surveys of other U. S. estuaries.  HRGS induction was also highly 
correlated (p<0.0001) with chemical groups normalized to the respective SQS and CSL values.  
However, the correlation coefficients were somewhat lower than those determined with chemical 
concentrations normalized to the ERM values. 

Toxicity vs. Individual Chemicals 

Correlations between measures of toxicity and concentrations of individual trace metals 
determined with both partial and total digestion metals are summarized in Tables 15 and 16.  No 
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significant results were seen with amphipod survival or urchin fertilization tests.  Results of both 
of the tests run with the organic solvent extracts, however, showed highly significant correlations 
with the concentrations of several trace metals.  Because the microbial bioluminescence and 
cytochrome P450 HRGS tests were performed with organic solvent extracts, trace metals were 
not expected to contribute significantly to the biological responses in these tests.  The 
correlations between results of these two tests and concentrations of trace metals that appear to 
be highly significant may reflect the co-variance in concentrations of metals and the organic 
toxicants that were eluted with the solvents and were more likely to have caused the responses. 

The cytochrome P450 HRGS response was highly correlated with the concentrations of all low 
molecular weight PAHs (Table 17), high molecular weight PAHs (Table 18), and summed 
concentrations of these chemical classes.  Results of the Microtox tests also were highly 
correlated with PAH concentrations, but to a somewhat lesser degree than in the HRGS tests.  
The correlations with the HRGS response were higher for the high molecular weight substances 
than for the low molecular weight chemicals.  In addition to the PAHs, the concentrations of 
carbazole and dibenzofuran were highly correlated with the Microtox and HRGS assay results, 
the latter more so than the former (Table 19).  The HRGS assay is known to respond to some 
PCB congeners that share some toxicological properties with dioxins and furans, but it is largely 
unresponsive to most congeners.  In these samples, the HRGS assay results were highly 
correlated (p<0.0001) with the concentrations of total PCB congeners and total chlorinated 
organic hydrocarbons (HCHs) (Table 20).  The correlations were somewhat weaker (p<0.001) 
with concentrations of total PCB Aroclors, Aroclor 1254, and congener 101. 

Scatter Plots 

The relationships between HRGS induction vs. the mean ERM quotients for 25 chemical 
substances and the concentrations of 13 PAHs are illustrated in Figures 20 and 21.  In both cases, 
the correlations were highly significant (p<0.0001).  A cluster of stations with very low chemical 
concentrations appears in the lower left corner of both diagrams.  As chemical concentrations 
incrementally increased, however, induction gradually increased.  Two samples from Thea Foss 
Waterway with intermediate chemical concentrations induced the HRGS response to levels of 
355 and 529 ug/g.  The data point in the upper right corner of the diagrams represents the sample 
from Thea Foss station 294 in which the HRGS response was 1995 ug/g, the highest observed in 
all 300 Puget Sound samples.  Samples that had total PAH concentrations less than the ERL 
value showed the lowest responses.  HRGS responses generally were intermediate as PAH 
concentrations exceeded the ERL.  The response was highest in the sample with the PAH 
concentration greater than the ERM value.  Therefore, these scatterplots tend to verify dose-
response relationships initially indicated with the correlation coefficients. 

The results of the Microtox tests vs. the mean ERM quotients for 25 substances and the sum of 
13 PAH concentrations also were highly significant (p<0.0001), but the coefficients were 
somewhat lower than observed with the HRGS tests (Table 14, Figures 22, 23).  Expressed as 
percentages of the control responses, the Microtox results showed a range in response in the 
least contaminated samples.  As mean ERM quotients approached values of about 0.25 and total 
PAH concentrations began to exceed the ERL value, the variability in responses among samples 
decreased and EC50 values decreased as chemical concentrations increased. 
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The relationship between the HRGS assay responses and PAH concentrations is further 
illustrated in three scatterplots (Figures 24, 25, 26).  The correlations were highly significant 
(p<0.0001), and the least contaminated samples had the lowest HRGS responses.  However, the 
patterns in response were not as clear as with total PAH concentrations and mean ERM 
quotients, and were probably driven, in part, by the very high HRGS response value from Thea 
Foss station 294.  These correlations would be expected, given that the correlations with the 
mean sediment guideline and/or criteria quotients for PAHs were significant and given that these 
substances rarely occur in nature alone, but, rather, as complex mixtures.   

Summary  

The strong statistical correlations between the HRGS response and the concentrations of PAHs 
and other organic substances were similar to what was observed in the 1997 and 1998 phases of 
this survey.  Therefore, there appears to be a consistent response with this test among the three 
study areas, suggesting that complex mixtures of organic substances were driving the response.  
Whereas the urchin fertilization tests showed correlations with chemical concentrations in 
northern and central Puget Sound, they failed to indicate such patterns in southern Puget Sound.  
In contrast, the Microtox tests indicated strong correlations with mixtures of chemical 
concentrations in northern and southern Puget Sound, but much weaker correlations in the 
central area.  Amphipod survival tests largely failed to respond to any of the samples, and, 
therefore, did not indicate significant chemical correlations in any of the three areas.   

Benthic Community Analyses 
Community Composition and Benthic Indices 

A total of 604 benthic infauna taxa were identified in the 100 samples collected in southern 
Puget Sound (Appendix H).  Of the 604 taxa identified, 427 (71%) were identified to the species 
level.  Among the 427 species identified, 216 (51%) were polychaete species, 87 (20%) were 
arthropods, 77 (18%) were molluscs, and 47 (11%) were echinoderms and miscellaneous taxa 
(i.e., Cnidaria, Platyhelminthes, Nemertina, Sipuncula, Phoronidae, Enteropneusta, and 
Ascidiacea) and echinoderms.  Several of the species encountered in this survey may be new to 
science. 

As described in the Methods section, five benthic infaunal indices were calculated to aid in the 
examination of the community structure at each station.  These indices included total abundance, 
major taxa abundance (calculated for Annelida, Arthropoda, Mollusca, Echinodermata, and 
miscellaneous taxa), taxa richness, Pielou’s evenness (J’), and Swartz’s Dominance Index (SDI), 
and were calculated based on the abundance data collected for the 604 taxa found (Tables 21 and 
22).  Total abundance is displayed in both tables to facilitate comparisons among indices.  All 
data were based on analysis of a single sample collected at each station. 

Total Abundance  

Total abundance (number of individuals per 0.1m2) of benthic invertebrates at each station 
ranged from 3476 at station 213 (Port Gamble Bay) to 0 at stations 242 and 243 (Port of 
Olympia) (Table 21 and 22), with a mean of 645 + 623 standard deviation.  Sediment samples at 
eleven stations located in Port of Olympia (stations 242, 243), Dabob Bay (stations 219, 220), 
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Eld Inlet (station 240), central Hood Canal (stations 221, 223), Oakland Bay (stations 230-232), 
and Carr Inlet (station 264) had 100 or fewer individual organisms.  Sediment samples at 17 
stations had greater than 1000 individual organisms.  These stations were located in Port Gamble 
(stations 212, 213), Port Ludlow (208), Pickering Passage/Squaxin Island (station 247), East 
Passage (station 278), Gig Harbor (station 269, 270), NE and SE Commencement Bay (stations 
287, 288, 290, 293), and Thea Foss (295, 296), Middle (297, 299), and Blair (301, 302) 
Waterways.  The polychaetes Aphelochaeta sp. N1 and Aphelochaeta sp. were the dominant 
organisms in 10 of these 17 samples, while the mollusc Axinopsida serricata was dominant in 
three, and the polychaete Cossura pygodactylata was dominant at two of these stations with high 
total abundance. 

Major Taxa Abundance  

Total abundance and percent total abundance of five major taxonomic groups (Annelida, 
Arthropoda, Mollusca, Echinodermata, and miscellaneous taxa) are shown in Table 21.  Results 
also are compared among stations in stacked histograms (Appendix I). 

The total abundance of annelids ranged from 3202 in Port Gamble Bay (station 213) to 0 in Port 
of Olympia stations 242 and 243, where no organisms were present, with a mean of 398 + 528 
standard deviation.  Annelid abundance calculated as the percentage of total abundance ranged 
from 93% (station 225, south Hood Canal) to 0% (Port of Olympia stations 242 and 243).  
Annelids were the dominant taxa in many samples, representing over 33% of the total abundance 
in 78 of the 100 samples, over 50% in 60 samples, and 80% or more of the total abundance in 22 
samples.  Annelid abundance was equal to or greater than 90% of total abundance in samples 
collected in Port Gamble Bay (station 213), southern Hood Canal (station 225), inner Eld Inlet 
(station 240), Port of Olympia (station 244), Gig Harbor (station 270), southeastern 
Commencement Bay (station 288, 290), Middle Waterway (station 299), and Hylebos Waterway 
(station 305).  That is, annelids often were dominant in some of the urbanized harbors in which 
elevated chemical concentrations and significant toxicity were observed. 

In sharp contrast to the annelids, the arthropods were rarely dominant.  Total abundance of 
arthropods ranged from 731 (station 208, Port Ludlow) to 0 (station 225, Hood Canal; stations 
242 and 243, Port of Olympia; station 264, Carr Inlet), with a mean of 85 + 129 standard 
deviation.  Percent total abundance of arthropods ranged from 75% in Henderson Inlet (station 
250) to 0 % (station 225, Hood Canal; stations 242 and 243, Port of Olympia).  Arthropods 
represented over 33% of the total abundance in 15 of the 100 samples, and over 50% of the total 
organisms in only six samples, including northern Hood Canal (station 209), Oakland Bay 
(station 230), two from Eld Inlet (stations 238, 239), and two from Henderson Inlet (stations 249, 
250).   

The total abundance and relative abundance of molluscs as percentages of the totals were slightly 
higher than that for the arthropods.  Total abundance of molluscs ranged from 898 (station 287, 
southeast Commencement Bay shoreline) to 0 (stations 242 and 243, Port of Olympia), with a 
mean of 127 + 156 standard deviation.  Percent total abundance of molluscs ranged from 70% in 
East Passage (station 279) to 0 % (stations 242 and 243, Port of Olympia).  Molluscs represented 
over 33% of the total abundance in 23 of the 100 samples, and over 50% of the total benthos in 
only six samples, including Carr Inlet (station 264), East Passage (station 279); outer, northeast, 
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and southeast Commencement Bay (stations 283, 286, and 291); and Thea Foss Waterway 
(station 294).   

The echinoderms were less abundant than the three other phyla in almost all samples.  Total 
abundance of echinoderms ranged from 445 (station 237, Budd Inlet) to 0 in 31 stations.  The 31 
stations in which there were no echinoderms observed in the samples, included those in Port 
Ludlow (3), Dabob Bay (1), Hood Canal (4), Port of Shelton (2), Oakland Bay (1), Totten and 
Eld Inlets (2), Port of Olympia (2), Case and Carr Inlets (3), Hale Passage (1), Gig Harbor (2), 
Colvos Passage (1), Quartermaster Harbor (1), southeast Commencement Bay (3), and Thea 
Foss, Blair, and Hylebos Waterways (5)) (mean 22 + 67 standard deviation, mode = 0).  Percent 
total abundance values ranged from <1.0% in 63 samples, >1 to <10% in 28 samples, >10 to 
<23% in 6 samples, and between 36 and 55% in 3 samples in Budd Inlet (stations 237 and 241) 
and Drayton Passage (station 259).   

Total abundance of miscellaneous taxa (i.e., Cnidaria, Platyhelminthes, Nemertina, Sipuncula, 
Phoronidae, Enteropneusta, and Ascidiacea) was also low in most samples, ranging from 354 
(station 247, Pickering Passage/Squaxin Island) to 0 (10 stations including station 208, Port 
Ludlow; 214, Port Gamble; 219, Dabob Bay; 227, Port of Shelton; 240, Eld Inlet; 242 and 243, 
Port of Olympia; and 264, Carr Inlet; 269, Gig Harbor; and 301, Blair Waterway) (mean of 13 + 
37 standard deviation).  Percent total abundance values ranged from <1.0% in 39 samples, >1 to 
<10% in 56 samples, >10 to <15% in 4 samples, and 33% in one sample.  These miscellaneous 
phyla were rarely the dominant species in a sample (with the exception of the sipunculid, 
Edwardsia sipunculoides, at stations 245 and 247 in Pickering Passage/Squaxin Island), and, as 
with the echinoderms, generally were relatively minor contributors to total taxa numbers and 
total abundance. 

Taxa Richness 

Taxa richness, the total numbers of recognizable taxa in each sample, ranged from 0 in two 
samples from Port of Olympia (stations 242, 243) to 117 taxa in a sample from Middle 
Waterway (station 297)(Table 22), with a mean of 54 + 26 standard deviations.  There were 11 
samples in which 90 or more taxa were found, indicating a very high diversity in the 
macrofauna.   These samples were located primarily in passages, and large outer embayments 
and harbors, and included station 211, northern Hood Canal; stations 245-247, Pickering 
Passage/Squaxin Island; station 262, East Anderson Island/No. Cormorant Passage; station 272, 
Colvos Passage; station 275, Quartermaster Harbor; station 278, East Passage; stations 285 and 
287, southeast Commencement Bay shoreline; and station 297, Middle Waterway.  In contrast, 
there were eight samples in which 20 or fewer taxa were found.  Most of the samples with low 
taxa counts were collected in various inlets and small embayments of the southern sound, 
including the Port of Olympia (stations 242-244), Eld and Totten Inlets (stations 240 and 234), 
Dabob Bay (stations 219-220), and southern Hood Canal (station 225). 

Evenness 

Pielou’s index of evenness ranged from 0 in the two samples (stations 242 and 243) from the 
Port of Olympia, to 0.90 or more in two samples from Dabob Bay (stations 219, 220) and one 
sample from central Hood Canal (station 223)(Table 22) (mean of 0.67 + 0.72 standard 
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deviation).  There were 17 samples in which the index was <0.50, the majority collected from 
terminal inlets in the southernmost part of Puget Sound.  The samples were collected from Port 
Gamble and Port Ludlow (stations 206, 213), East Passage (station 279), Oakland Bay (station 
230); Eld, Budd, and Henderson Inlets (stations 236-238, 250), the Port of Olympia (stations 
242-243), Gig Harbor (stations 270), northeast and southeast Commencement Bay (stations 288, 
290, 293), and the Thea Foss and Hylebos Waterways (stations 295, 305).  Eighty-three samples 
had an evenness index greater than 0.50, while there were 25 samples in which the index was 0.8 
or greater, indicative of a relatively even distribution of organisms among the various taxa.  
These 25 samples were collected from both smaller bays and inlets and larger passages and more 
open bodies of water including Quilcene and Dabob Bays (stations 215, 219-220), central Hood 
Canal (stations 221, 223), Oakland Bay (stations 231-232), Totten and Eld Inlets (stations 233, 
235, 240), Pickering Passage/Squaxin Island (stations 245-247), Case and Carr Inlets (stations 
253, 263); Drayton, Hale, East and Colvos Passages (258, 266, 268, 272-273, 280), East 
Anderson Island /Cormorant Passage (station 260-261), Quartermaster Harbor (stations 275-
277), and southeast Commencement Bay (station 285). 

Swartz’s Dominance Index (SDI) 

Values were calculated for this index to determine the number of taxa whose combined 
abundance accounts for 75 percent of the total abundance in each sample.  The SDI values 
ranged from 0 in the two azoic samples from Port of Olympia (stations 242 and 243) to 31 in the 
sample from station 272 in northern Colvos Passage (Table 22) (mean 10 + 7 standard 
deviation).  Thirty-one samples had SDI values of 5 or less.  The majority of these stations with 
low SDI values were located in urban or rural embayments and terminal inlets.  These samples 
were collected from both East and Colvos Passages (stations 274, 279); Port Gamble, Port 
Ludlow, and southern Hood Canal (station 206, 212-213, 225-226); several south sound inlets 
and embayments (Port of Olympia, stations 242-244; Budd Inlet, stations 236-237, 241; Eld, 
Totten, and Henderson Inlets, stations 234, 238-240, 249-250; Oakland Bay, station 230; Gig 
Harbor, station 269-270); and from Commencement Bay (stations 290-291, 293) and the Thea 
Foss, Blair, and Hylebos waterways (stations 295, 300-303, 305).  Thirty-two samples had SDI 
values between 6 and 10, while 16 samples had SDI values from 11-15.  Twenty-one samples 
had SDI values ranging between 16 and 31.  In contrast with the embayment/inlet samples with 
low SDI values (0-5), these 21 samples with the highest SDI values were located primarily in 
Puget Sound’s passages, larger inlets, and outer embayments.   These samples were located in 
north Hood Canal (stations 210-211), Quilcene Bay (station 216), Pickering Passage/Squaxin 
Island (station 245-247), Nisqually Reach (254), Drayton Passage (station 258), East Anderson 
Island/North Cormorant Passage (station 260-262), Carr Inlet (station 263), Hale Passage (266-
268), Colvos Passage (stations 272-273), Quartermaster Harbor (station 275), East Passage 
(station 280), and outer and southeast Commencement Bay (stations 284-285). 

Summary  

As with the previous infaunal assemblage studies conducted in north and central Puget Sound 
(Long, et al. 1999a, 2000), benthic infaunal assemblages in south Puget Sound indicated a wide 
variety of characteristics in different locations and habitat types throughout the study area.  
Infaunal assemblages examined typically had relatively high abundance, taxa richness, evenness, 
and dominance values.  Polychaetes were typically the most abundant taxa group (up to 93% of 
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the infaunal composition), followed by arthropods (up to 75%), mollusks (up to 70%), 
echinoderms (up to 55%), and miscellaneous taxa (up to 33%).  Total abundance was greatest at 
station 213 (Port Gamble Bay), while two samples collected in the Port of Olympia (stations 242 
and 243) near a superfund cleanup site had no living organisms in them.  In general, many of the 
small embayments and inlets throughout the study area had infaunal assemblages with relatively 
low total abundance, taxa richness, evenness, and dominance values.  In some of the small 
urban/industrial embayments however, cases were found where total abundance values were 
very high, typically due to high abundance of one organism such as the polychaetes 
Aphelochaeta sp. N1, Aphelochaeta sp., or Cossura pygodactylata; the mollusk Axinopsida 
serricata; the arthropod Aoroides spinosus; and the echinoderm Amphiodia urtica/periercta 
complex.  The majority of the samples collected from passages, outer embayments, and larger 
bodies of water tended to have infaunal assemblages with high total abundance, taxa richness, 
evenness, and dominance values. 

Relationships between Benthic Infaunal Indices and Sediment 
Characteristics, Toxicity, and Chemical Concentrations 

The statistical relationships between indices of benthic community structure and selected 
sediment characteristics were calculated using Spearman rank correlations.  These correlations 
were used to determine if any of the measures of benthic community structure co-varied with any 
of the sediment characteristics quantified in this study.  Measures of naturally occurring 
sediment variables such as grain size and total organic carbon (Table 23), toxicity (Table 24), 
and concentrations of chemical contaminants (Table 25-31) were included in the correlations 
with benthic infaunal indices. 

Benthic Infauna Indices vs. Grain Size and Total Organic Carbon 

Typically, concentrations of trace metals tend to increase with increased percent fines, and high 
concentrations of organic chemicals are often related to higher total organic carbon (TOC) 
concentrations in sediments.  Since higher concentrations of toxic chemicals such as trace metals 
and organic chemicals are expected to be related to decreased benthic community abundance and 
variability, higher concentrations of fines and organic carbon are also expected to be related to 
decreased abundance and diversity.  The correlations indicated that both taxa richness and the 
SDI values decreased as percent fine-grained materials increased (Table 23).  However, these 
correlations were relatively weak (p<0.05 or <0.01).  The concentrations of fine-grained particles 
were not correlated with the other benthic indices.  On the other hand, many of the calculated 
benthic indices were significantly correlated with the concentrations of TOC in the sediments.  
Taxa richness, SDI, and annelid abundance appeared to decrease significantly with increasing 
TOC concentrations.  Several of the other indices also showed weak correlations with TOC 
content. 

Benthic Infauna Indices vs. Toxicity 

Most indices of benthic abundance and diversity would be expected to decrease with increasing 
toxicity, i.e., decreasing amphipod survival, decreasing urchin fertilization, decreasing 
Microtox EC50’s, and increasing cytochrome P450 HRGS induction.  Because there was no 
significant mortality in the amphipod tests, correlations between survival and benthic indices 
were not significant (Table 24).  The abundance of arthropods and miscellaneous taxa were 
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weakly correlated with urchin fertilization, indicating a slight pattern of declining abundance as 
fertilization success decreased.  Results of the Microtox tests and HRGS assays, on the other 
hand, showed strong correlations with indices of evenness and dominance that were highly 
significant (p<0.0001).  As Microtox bioluminescence EC50 values decreased (indicating 
increasing toxicity), the evenness index and the numbers of dominant species also decreased.  As 
HRGS induction increased (indicative of exposure of toxicants), the indices of evenness and 
dominance decreased.  The abundance of miscellaneous taxa also decreased as HRGS induction 
increased (p<0.001). 

Benthic Infauna Indices vs. Classes of Chemical Chemicals 

Spearman-rank correlations were calculated for benthic indices vs. concentrations of chemical 
groups normalized to their respective sediment guidelines or criteria (Table 25) to determine if 
they corresponded with each other.  The data indicated that there was considerable 
correspondence between benthic measures and several groups of chemicals in the sediments.  
The chemical classes that were correlated with the benthic indices differed among the benthic 
endpoints.  Most correlations were positive, while a few were negative. 

First, both taxa richness and the SDI were negatively correlated with the concentrations of trace 
metals, whether normalized to the ERM, or SQS, or CSL values.  The correlations with taxa 
richness were considerably stronger than those with the SDI values.  Second, total abundance 
and taxa richness were highly correlated with the concentrations of PAHs in the samples.  
However, these correlations were positive, indicating that the abundance of the benthos and the 
numbers of species increased as the concentrations of PAHs increased.  In addition, the 
abundance of annelids and molluscs showed the same patterns, i.e., increasing abundance with 
increasing PAH concentrations.  In contrast, Pielou’s index of evenness was negatively 
correlated with the concentrations of the PAHs, which is more consistent with what would be 
expected.  The abundance of arthropods, echinoderms, and miscellaneous phyla were either not 
significantly correlated with chemical concentrations or, as in the case of the miscellaneous taxa, 
only weakly correlated with them.   

Benthic Infauna Indices vs. Individual Chemical Chemicals 

The benthic indices that co-varied to the greatest degree with trace metals concentrations (partial 
digestions) were total abundance, taxa richness, and annelid abundance (Table 26).  As 
suggested with the correlations with trace metal concentrations normalized to the respective 
guidelines or criteria, the correlations between individual metals concentrations determined with 
partial digestions and taxa richness often were highly significant. This was especially apparent 
with a number of minor elements (i.e., aluminum, iron, magnesium, and sodium) that are not 
terribly toxic, but indicative of estuarine, fine-grained, depositional areas.  Nevertheless, the 
correlations between taxa richness and the concentrations of potentially toxic metals (i.e., 
cadmium, chromium, nickel, selenium, and zinc) were highly significant.  Curiously, whereas 
the abundance of annelids was not significantly correlated with mean guideline or criteria 
quotients for trace metals, the correlations with a number of individual elements (e.g., chromium, 
cobalt, nickel, and selenium) were highly significant.  The abundance of molluscs was also 
highly correlated with concentrations of selenium.  Total abundance of the benthos was highly 
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correlated (p<0.0001) with the concentrations of chromium, manganese, and nickel determined 
with partial digestions (Table 26).  

The correlations between trace metals concentrations and benthic indices changed somewhat 
when the data from total digestions were analyzed (Table 27).  The correlation coefficients often 
were slightly lower than with the partial digestion metals data and fewer correlations were highly 
significant.  Nickel and selenium appeared to be significantly correlated with many benthic 
indices.  Taxa richness was significantly correlated with cadmium, chromium, and selenium.  
Swartz’s dominance index and the abundance of annelids and molluscs were correlated with two 
or three metals. 

Pielou’s evenness index was significantly negatively correlated with a number of the low 
molecular weight PAHs.  Total abundance and mollusc abundance increased with increasing 
concentration of the sums of 6 LPAH, and dominance decreased slightly with increasing 
concentrations of many individual chemicals and the sums of 7 LPAH (Table 28).  Total 
abundance, evenness, and dominance all showed about the same patterns with concentrations of 
high molecular weight PAHs (Table 29).  Both the correlation coefficients and the benthic 
indices that were correlated with the concentrations of PAHs differed between the dry wt. 
normalized ERM classes and the organic carbon – normalized SQS/CSL classes of compounds.  
Evenness and dominance, in particular, were highly correlated with the HPAHs.  In contrast, 
none of the correlations between PCB and DDT concentrations and the benthic indices was 
significant (Table 30).   

None of the benthic indices was highly correlated (p<0.0001) with the concentrations of any of 
the organotins, phenols, or miscellaneous substances (Table 31).  However, Pielou’s evenness 
index decreased as the concentrations of dibenzofuran increased. The chemical 9(H) carbazole 
also showed a slight negative correlation with both evenness and dominance. These two 
chemicals also showed significant correlations with Microtox and HRGS test results. 

Summary 

The majority of the benthic infaunal indices calculated were weakly or not significantly 
correlated with the sediment measures of percent fines and total organic carbon.  The exceptions 
were taxa richness, Swartz’s Dominance Index, and annelid abundance, which were moderately 
to highly negatively correlated with percent TOC.  Correlations between amphipod survival and 
benthic indices were not significant, while results of the Microtox tests and HRGS assays 
showed highly significant correlations with indices of evenness and dominance.  The abundance 
of miscellaneous taxa also decreased as HRGS induction increased.  Taxa richness and the SDI 
were negatively correlated with the mean ERM and SQS quotients for trace metals, while total 
abundance, taxa richness, and the abundance of annelids and molluscs were highly positively 
correlated with mean ERM and SQS quotient of PAHs in the samples.  The benthic indices that 
co-varied to the greatest degree (i.e., significant negative correlations) with individual trace 
metals concentrations were total abundance, taxa richness, and annelid abundance. Pielou’s 
evenness and the SDI were significantly negatively correlated with a number of the LPAH and 
HPAH chemicals, while total abundance was positively correlated with these measures.  In 
contrast, none of the correlations between PCB, DDT, organotins, and phenols concentrations 
and the benthic indices were significant.  However, Pielou’s evenness index decreased as the 
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concentrations of dibenzofuran increased, and the chemical 9(H) carbazole also showed a slight 
negative correlation with both evenness and dominance. These two chemicals also showed 
significant correlations with Microtox and HRGS test results.  All of these results, together, 
suggest that no single chemical or chemical class acting alone caused either the responses in the 
toxicity tests or the changes in benthic indices in these samples and changes in benthic indices 
could not be foretold with any single toxicity test. 

Triad Synthesis: A Comparison of Chemistry, Toxicity, and Infaunal 
Parameters 

To generate a more comprehensive picture of the quality of the sediments throughout the study 
area, a weight-of-evidence approach was used to simultaneously examine all three “sediment 
triad” parameters measured.  Results from the toxicity testing, chemical analyses, and benthic 
community analyses from all stations were combined into one table (Appendix J).  Included in 
this compilation are the chemicals measured at concentrations above the critical values (state 
standards, NOAA guidelines) and bioassay results indicative of a significant response.  Benthic 
infaunal assemblages are represented in Appendix J by listing the nine infaunal indices generated 
for each station.  In the absence of multimetric benthic index as used in EMAP studies, best 
professional judgment was used to evaluate the condition of the infaunal assemblages in this 
Puget Sound study.  The suite of infaunal indices was examined for each station, and a 
determination was made as to whether the infaunal assemblage appeared to be adversely affected 
by unfavorable conditions, either natural or anthropogenic.  Healthy assemblages typically 
displayed a combination of high total abundance, taxa richness, evenness, and dominance index 
values.  Assemblages that appeared to be adversely affected by their surroundings typically 
displayed lower total abundance, taxa richness, evenness, and dominance values, although in 
some cases, total abundance in a sample was elevated due to large numbers of one or two species 
(e.g., pollution tolerant species).  Appendix J was then reviewed to determine the number of 
significant triad results present at each station.  This “weight-of-evidence” approach was used to 
define each station, based on the number of impaired parameters measured at each station. 

Four categories of sediment quality were generated to define each station, including: 

- High Quality (none of the sediment triad parameters impaired) 
- Intermediate/High Quality (1 sediment triad parameter impaired) 
- Intermediate/Degraded Quality (2 sediment triad parameters impaired) 
- Degraded Quality (all of the sediment triad parameters impaired)  
 

A summary of the total number of south Puget Sound stations with each of the four types of triad 
combinations for the south Puget Sound stations is displayed in Table 32 and depicted in Figures 
27-30. There were 11 stations (4.4 km2, 0.5% total study area) displaying sediment toxicity, 
chemical contamination, and altered benthos (i.e., “Degraded Quality”).  These stations were 
located in Port Gamble Bay (stations 212, 214); the Port of Olympia (stations 243-244); and 
Thea Foss (stations 294-296), Middle (station 299), and Hylebos Waterways (stations 303-305) 
in Commencement Bay.  All of these stations were shallow (3-14m, mean = 9 + 3 s.d.), represent 
a small area (<0.1 to 1.4km2, mean = 0.4 + 0.5 s.d.), and with the exception of Port Gamble, all 
are located in major urban areas.  Grain size at these stations was variable, ranging from 11 to 
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78% fines (mean = 58 + 18 s.d.), but TOC values were high, ranging from 0.5-7.9%OC (mean = 
2.8 + 2.0 s.d.).  Salinity ranged from 23-31ppt (mean = 29 + 2.3 s.d.).  Infaunal assemblages in, 
the majority of these 11 stations were characterized by variable total abundance (0-2924 
individual, mean = 1038 + 874 s.d.), taxa richness from 0 to 82 (mean = 52 + 25 s.d.), evenness 
values from 0.0-0.77 (mean = 0.49 + 0.20 s.d.), and Swartz’s Dominance Index from 0 to 10 
(mean = 4.5 + 3.0 s.d.).  The assemblages were dominated by annelids (0-2259 individuals, mean 
= 831 + 709 s.d.), followed by molluscs (0-521 individuals, mean = 152 + 171 s.d.), arthropods 
(0-119 individuals, mean = 41 + 41 s.d.), echinoderms (0-41, mean = 9 + 15 s.d.), and 
miscellaneous taxa (0-10 individuals, mean = 4 + 3 s.d.).  The polychaete species Aphelochaeta 
sp. N1 was the dominant taxon at ten of the eleven stations, while the station with the lowest 
salinity (station 294 in the Thea Foss Waterway) was dominated by the mollusc Alvania 
compacta and the polychaete Capitella capitata hyperspecies. The sediment from these 11 
stations displayed a wide variety of chemical contaminants, reflective of the various types of 
anthropogenic activity in the surrounding areas.  Mean ERM quotients ranged from 0.1 to 4.3 
(mean = 1.0 + 1.2 s.d.).  All stations showed significant toxicity with the cytochrome P450 
HRGS bioassay.    

There were 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical 
contamination, and supporting abundant and diverse infaunal assemblages. These stations were 
located in Port Ludlow (station 208); northern (stations 209-211), central (stations 222-223), and 
southern (stations 224-226) Hood Canal; Quilcene Bay (stations 215-217); Dabob Bay (station 
218); Totten and Eld Inlets (stations 234, 239); Pickering Passage/Squaxin Island (station 246); 
Henderson (station 248-249), Case (station 253) and Carr Inlets (stations 263-264); Nisqually 
Reach (station 254-256); Drayton (stations 258-259), Hale (stations 267-268), Colvos (stations 
272-274), and East Passage (station 280); East Anderson Island/Cormorant Passage (station 261-
262); Quartermaster Harbor (station 275); and Outer Commencement Bay (station 284).  These 
stations typically included the larger, deeper inlets, basins, and passages of the more rural areas 
of south Puget Sound and Hood Canal, as well as a few smaller embayments.  These stations 
represented areas in their respective strata that ranged in size from 0.9 to 36.4 km2 (mean = 13.7 
+ 11.5 s.d.), with depths ranging from 2 to 166m (mean = 57 + 44 s.d.).  Grain size at these 
stations was variable, ranging from 2 to 96% fines, but was typically coarser (mean = 39 + 33 
s.d.) than in the 11 degraded stations described above, while TOC values were lower, ranging 
from 0.06-4.2%OC (mean = 1.3 + 1.1 s.d.).  Salinity in these stations was similar to the 11 
above, ranging from 23-32ppt (mean = 29 + 2.2 s.d.).  In comparison with the 11 stations with 
degraded sediment quality, infaunal assemblages in these 36 stations were characterized by 
lower total abundance (69 to 1574 individuals, mean = 426 + 292 s.d.), similar taxa richness 
from 15 to 104 (mean = 58 + 26 s.d.), higher evenness values from 0.51-0.92 (mean = 0.75 + 
0.10 s.d.), and higher Swartz’s Dominance Index values ranging from 2 to 31 (mean = 14 + 8 
s.d.).  Sediments at these stations were dominated by annelids (35-645 individuals, mean = 206 + 
142 s.d.), followed by arthropods (0-731 individuals, mean = 97 + 139 s.d.), molluscs (4-427 
individuals, mean = 85 + 100 s.d.), echinoderms (0-380, mean = 26 + 68 s.d.), and miscellaneous 
taxa (0-61 individuals, mean = 11 + 11 s.d.).  The assemblages at these stations with high quality 
sediments typically had lower numbers of annelids and higher numbers of arthropods and 
molluscs than the 11 stations with degraded sediments.  The suite of dominant species at the 
stations with high quality sediments also differed from those with degraded sediments, and 
included the polychaetes Levinsenia gracilis, Trochochaeta multisetosa; the arthropods 
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Eudorella pacifica, Euphilomedes carcharodonta, Euphilomedes producta; the molluscs 
Axinopsida serricata, Parvilucina tenuisculpta; and the echinoderm Amphiodia urtica/periercta 
complex. 

Thirty-five stations (274.1 km2, 32.0% total study area) had one impaired sediment triad 
parameter (i.e., intermediate/high quality sediments), and included stations with characteristics 
similar to those with high quality sediments.  Intermediate/high quality sediments were found in 
Port Gamble Bay (station 213); Dabob Bay (stations 219-220); central Hood Canal (station 221); 
Oakland Bay (stations 230-232); Totten (station 233), Eld (stations 238, 240), Budd (station 
241), Henderson (station 250), Case (station 251-252), and Carr (station 265) Inlets; Pickering 
Passage/Squaxin Island (station 245, 247); Drayton (station 257)  Hale (station 266), and East 
Passage (stations 278-279); Gig (station 271) and Quartermaster (station 276-277) Harbors; 
outer (stations 281-283), southeast (stations 285-286, 288-290), and northeast (stations 291-292) 
Commencement Bay; and Middle Waterway (station 298).   

The remaining 18 stations (85.7km2, 10.0% total study area) had two impaired sediment 
parameters (i.e., intermediate/degraded quality sediments), and included stations with 
characteristics similar to those with degraded sediments.  Intermediate/degraded quality 
sediments were found in Port Ludlow (stations 206-207); the Port of Shelton (stations 227-229); 
Totten (station 235) and Budd (station 236-237) Inlets; the Port of Olympia (station 242); East 
Anderson Island/North Cormorant Passage (station 260); Gig Harbor (stations 269-270); 
southeast (station 287) and northeast (station 293) Commencement Bay; and Middle (station 
297) and Blair (stations 301-302) Waterways. 

Summary 

A weight-of-evidence approach was used to simultaneously examine all three “sediment quality 
triad” parameters measured.  This approach was used to define each station, based on the number 
of impaired parameters measured at each station.  Four categories of sediment quality were 
generated, including “High Quality” (none of the sediment triad parameters impaired), 
“Intermediate/High Quality” (1 sediment triad parameter impaired), “Intermediate/Degraded 
Quality” (2 sediment triad parameters impaired), and “Degraded Quality” (all of the sediment 
triad parameters impaired).  There were 11 stations (4.4 km2, 0.5% total study area) with 
sediment toxicity, chemical contamination, and altered benthos (i.e., “Degraded Quality”).  
These stations were shallow, represented a small area, were primarily located in major urban 
areas, and had relatively fine grain size and high TOC values.   Infaunal assemblages typically 
had higher total abundance (typically due to one or two abundant dominant organisms), 
moderate taxa richness and evenness, lower dominance values, and were dominated by annelids, 
sometimes in high abundance, followed by molluscs, arthropods, echinoderms, and 
miscellaneous taxa.  The polychaete species Aphelochaeta sp. N1 was the dominant taxa at ten of 
the eleven stations, while the station with the lowest salinity (station 294 in the Thea Foss 
Waterway) was dominated by the mollusc Alvania compacta and the polychaete Capitella 
capitata hyperspecies. The sediment from these 11 stations displayed a wide variety of chemical 
contaminants, reflective of the various types of anthropogenic activity in the surrounding areas 
and all stations showed significant responses with the cytochrome P450 HRGS. 
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In contrast, 36 stations (493.5 km2, 57.5% total study area) had no toxicity or chemical 
contamination, and abundant and diverse infaunal assemblages.  These stations typically 
included the larger, deeper inlets, basins, and passages of the more rural areas of south Puget 
Sound and Hood Canal, as well as a few smaller embayments.  They tended to have coarser 
sediment with lower TOC content than those stations with degraded sediment quality.  Infaunal 
assemblages at these stations had lower total abundance, and higher evenness and dominance 
values than those stations with degraded sediment quality.  The assemblages at these stations 
typically had lower numbers of annelids and higher numbers of arthropods and molluscs than 
stations with degraded sediments, and a different suite of dominant species. 

Thirty-five stations (274.1 km2, 32.0% total study area) had one impaired sediment triad 
parameter (i.e., intermediate/high quality sediments), and included stations with characteristics 
similar to those with high quality sediments.  The remaining 18 stations (85.7km2, 10.0% total 
study area) displayed two impaired sediment parameters (i.e., intermediate/degraded quality 
sediments), and included stations with characteristics similar to those with degraded sediments.   
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Discussion 
Spatial Extent of Toxicity 
The survey of sediment toxicity in southern Puget Sound was similar in intent and design to 
those performed elsewhere by NOAA in many different bays and estuaries in the U. S. (Long et 
al., 1996).  Using methods comparable to those used in the survey of southern Puget Sound, 
NOAA and U. S. EPA have developed data for areas along the Atlantic, Gulf of Mexico, and 
Pacific coasts to determine the presence, severity, regional patterns and spatial scales of toxicity 
(Long et al., 1996; Long, 2000).  Spatial extent of toxicity in other regions ranged from 0.0% of 
the area to 100% of the area, depending upon the toxicity test.  However, data equivalent to those 
developed in this survey have not been generated previously in Puget Sound, therefore 
comparisons with earlier surveys are not feasible. 

All aspects of the study design of this survey were the same as those for the surveys of northern 
and central Puget Sound, including methods for sample collections, sample analyses, and data 
interpretations (Long et al., 1999a, 2000).  The intent of the three surveys was to provide 
information on sediment quality throughout all regions of the study area, including a number of 
urbanized/industrialized areas.  This survey was not intended to focus upon any existing or likely 
point source of toxicants.  Therefore, the survey area was very large and complex.  The data 
from the laboratory bioassays were intended to represent the toxicological condition of the 
survey area, using a battery of complementary tests with different endpoints.  Data from 
chemical analyses were generated to characterize the chemical characteristics of samples.  
Benthic community analyses were performed to determine if significant toxicological results in 
the laboratory were also apparent in the resident biota in the field.  The primary objectives were 
to estimate the severity, spatial patterns, and spatial extent of toxicity, chemical contamination 
and changes in benthic community structure.  A stratified-random design was followed to ensure 
that unbiased sampling was conducted and, therefore, the data could be attributed to the strata 
within which samples were collected. 

Four different toxicity tests were performed on all the sediment samples.  All tests showed some 
degree of differences in results among the test samples and negative controls.  All showed spatial 
patterns in toxicity that were unique to each test, but, also overlapped to varying degrees with 
results of other tests.  There were no two tests that showed duplicative results. 

Comparisons of toxicity test results among the three regions of the Sound indicated several 
different patterns (Table 33).  Highly toxic conditions were apparent in only one of the 300 
samples tested for amphipod survival, thus, no spatial patterns were evident with the data from 
that test.  The urchin and Microtox tests indicated that toxicity was slightly more widespread in 
northern and southern regions of the Sound and least pervasive in the central region.  The 
cytochrome P450 HRGS assay indicated that significant and highly significant responses were 
more widespread in the central and southern regions.  Therefore, based upon the data from the 
three most sensitive tests, it appears that toxicity was slightly more widespread in the southern 
region than in the other two.  
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Based upon the combined data from all three regions, the entire survey encompassed 
approximately 2363 km2 of Puget Sound (Table 33).  The strata in which highly significant 
responses were observed represented 0.04% of the area in the amphipod survival tests (i.e., 
control-adjusted survival <80%) and 0.4% of the area in the Microtox tests (i.e., EC50 <0.51 
mg/ml).  In the sea urchin tests, the overall spatial extent of toxicity represented 4%, 0.7%, and 
0.6% of the combined area in tests of the three porewater concentrations.  In the HRGS assays, 
samples with responses >11.1 ug/g and >37.1 ug/g represented 24.8% and 2.8%, respectively, of 
the combined area.  Thus, based upon the criteria for highly significant responses in each of the 
four tests, the overall spatial extent of toxicity was very small throughout the combined Puget 
Sound study area, ranging from 0.04% to 4% in the four tests. 

Amphipod Survival – Solid Phase 

These tests of relatively unaltered, bulk sediments were performed with juvenile stages of 
crustaceans exposed to the sediments for 10 days.  The endpoint was survival.  Data from several 
field surveys conducted along portions of the Pacific, Atlantic, and Gulf of Mexico coasts have 
shown that significantly diminished survival of these animals often is coincident with decreased 
benthic resources.  In particular, losses in total abundance of benthos, abundance of crustaceans 
(including amphipods), total species richness, and other metrics of benthic community structure 
often occur in samples classified as toxic in these tests (Long et al., 2001).  Therefore, this test 
often is viewed as having relatively high ecological relevance.  In addition, it is the most 
frequently used test nationwide in assessments of dredging material and hazardous waste sites. 

The amphipod tests proved to be the least sensitive of the tests performed in southern Puget 
Sound.  Of the 100 samples tested, survival was significantly different from controls in 3 
samples.  Samples in which test results were significant were collected at stations widely 
scattered throughout the study area.  The data showed no spatial pattern or gradient in response 
among contiguous stations or strata.  Control-adjusted survival was 81%, 90%, and 92% in the 
three statistically significant samples.  Therefore, none of the samples was classified as “highly 
toxic”.  The incidence of statistically significant toxicity in these samples (3%) was somewhat 
lower than observed in central Puget Sound in 1998 (7%) and in northern Puget Sound in 1997 
(13%).  Overall, the combined incidence of significant toxicity was 7.7% (23 of 300 samples) for 
all three years. 

The results in the amphipod tests performed in Puget Sound differed from results of comparable 
studies conducted elsewhere in the U.S.  Whereas amphipod survival was less than 80% of 
controls in 12.4% of samples from studies performed elsewhere (n=2630; Long, in press), only 
one of the samples from central Puget Sound showed survival that low.  None of the northern 
Puget Sound samples and none from the southern region indicated survival of less than 80% of 
controls.   

With the results of the amphipod tests weighted to the sizes of the sampling strata within which 
samples were collected, the spatial scales of toxicity were estimated and expressed as percentage 
of the study area.  A critical value of <80% of control response was used to estimate the spatial 
extent of toxicity in this test.  However, because none of the test samples indicated less than 80% 
survival relative to controls in southern Puget Sound, the spatial extent of toxicity was estimated 
as 0% of the southern region of the survey area.   
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To add perspective to these data, the results from southern, central and northern Puget Sound 
were compared to those from other estuaries and marine bays surveyed by NOAA in the U.S. 
The methods for collecting and testing the samples for toxicity were comparable to those used in 
the Puget Sound surveys (Long et al., 1996; Long, 2000).  In surveys of 27 U. S. regions, 
estimates of the spatial extent of toxicity ranged from 0.0% in many areas to 85% in Newark 
Bay, NJ (Table 34).  The three regions of Puget Sound were among the many survey areas in 
which the spatial extent of toxicity in the amphipod tests was estimated to be 0% to 0.1%.  With 
the data compiled from studies conducted through 1997, the samples that were classified as toxic 
represented about 5.9% of the combined area surveyed.  The data for all three regions of Puget 
Sound fell well below the national average.  These data suggest that acute toxicity as measured 
in the amphipod survival tests was neither severe nor widespread in these regions of Puget 
Sound. 

Sea Urchin Fertilization - Pore Water  

Early life stages of invertebrates often are more sensitive to toxicants than adult forms, mainly 
because fewer defense mechanisms are developed in the gametes than in the adults (Carr, 1997).  
The test endpoint - fertilization success - is a sublethal response expected to be more sensitive 
than the acute mortality response recorded in the amphipod tests.  The gametes were exposed to 
the pore waters extracted from the samples; the phase of the sediments in which toxicants were 
expected to be highly bioavailable.  This test was adapted from protocols for bioassays originally 
performed to test wastewater effluents and has had wide application throughout North America 
in tests of both effluents and sediment pore waters.  The combined effects of these features was 
to develop a relatively sensitive test - much more sensitive than that performed with the 
amphipods exposed to solid phase sediments. 

Urchin fertilization was less than 80% of controls in southern Puget Sound samples that 
represented 5.7% of the area with tests of 100% pore water, 0.5% with tests of 50% pore water, 
and 0.3% with tests of 25% pore water.  These estimates are roughly equal to those calculated 
for the northern Puget Sound area where the estimated percentages were 5.2%, 1.5% and 1.1% of 
the total, respectively.  In central Puget Sound, the spatial extent of toxicity totaled about 0.5%, 
0.2%, and 0.6% of the total area in tests of the three porewater concentrations, respectively.  
Therefore, conditions as estimated in this test were roughly equivalent in the southern and 
northern regions and somewhat less toxic in the central region. 

NOAA estimated the spatial extent of toxicity in urchin fertilization or equivalent tests 
performed with 100% pore water in many other regions of the U. S. (Long et al., 1996).  These 
estimates ranged from 98% in San Pedro Bay (CA) to 0.0% in Leadenwah Creek (SC) (Table 
35).  As in the amphipod tests, all three regions of Puget Sound ranked near the bottom of this 
range, well below the “national average” of 25% calculated with data accumulated through 1997. 
Equivalent results in this test were reported in areas such as St. Simons Sound (GA), St. Andrew 
Bay in western Florida, and Leadenwah Creek (SC), in which urbanization and industrialization 
were restricted to relatively small portions of the estuaries.  Therefore, as with the amphipod 
tests, these tests indicated that acute toxicity was neither widespread nor severe in Puget Sound 
sediments. 

Microbial Bioluminescence (Microtox™) - Organic Solvent Extract 
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The Microtox tests were performed with organic solvent extracts of the sediments.  These 
extracts were intended to elute all potentially toxic organic substances from the sediments 
regardless of their bioavailability.  The tests, therefore, provide an estimate of the potential for 
toxicity attributable to complex mixtures of toxicants associated with the sediment particles, and, 
not normally available to benthic infauna.  This test is not sensitive to the presence of ammonia, 
hydrogen sulfide, fine-grained particles or other features of sediments that may confound results 
of other tests.  The test endpoint is a measure of metabolic activity, not acute mortality.  These 
features combined to provide a relatively sensitive test - usually the most sensitive test 
performed nationwide in the NOAA surveys (Long et al., 1996).   

In northern Puget Sound (Long et al., 1999), the data were difficult to interpret because of the 
unusual result in the negative control sample from Redfish Bay (TX).  Test results for the control 
showed the sample to be considerably less toxic relative to previous tests of sediments from that 
site and to tests of negative control sediments from other sites used in previous surveys.  
Therefore, new analytical tools were generated with the compiled NOAA data to provide a 
meaningful critical value for evaluating the northern Puget Sound data. 

Using a critical EC50 value of <0.51 mg/ml, it was estimated that the spatial extent of toxicity in 
the northern Puget Sound represented 1.2% of the survey area. The estimate for central Puget 
Sound (0% of the area) was less than the estimate for northern Puget Sound.  For the southern 
region, the estimate was 0.2% of the area.  These estimates ranked northern, central, and 
southern Puget Sound at the bottom of the distribution for data generated from 19 bays and 
estuaries surveyed by NOAA (Table 36). Also, they were considerably less than the estimate for 
the combined national estuarine average of 39% calculated with data compiled through 1997. 

Human Reporter Gene System (Cytochrome P450) Response - Organic 
Solvent Extract  

This test is intended to identify samples in which there are elevated concentrations of mixed-
function oxygenase inducing organic chemicals, notably the dioxins and higher molecular weight 
PAHs. It is performed with a cultured cell line that provides very reliable and consistent results.  
Tests are conducted with an organic solvent extract to ensure that potentially toxic organic 
chemicals are eluted.  High cytochrome P450 HRGS induction may signify the presence of 
substances that could cause or contribute to the induction of mutagenic and/or carcinogenic 
responses in local resident biota (Anderson et. al., 1995, 1996). 

In central Puget Sound, the cytochrome P450 HRGS assay indicated that samples in which 
results exceeded 11.1 and 37.1 µg/g B(a)P equivalents represented approximately 32.3% and 
3.2%, respectively, of the total survey area. In the southern region, results were roughly 
equivalent to those for the central region (i.e., 38.4% and 5.0%).  In contrast, the equivalent 
estimates for northern Puget Sound were much lower at 2.6% and 0.03% of the study area (Long 
et al., 1999a).  Therefore, toxicity estimated with this test was most widespread in the central and 
southern regions and least widespread in the northern region.  Relatively high responses were 
recorded in many samples from large strata sampled in central Puget Sound, thereby resulting in 
larger estimated areas.  In northern Puget Sound the samples with elevated responses were 
collected primarily in the small strata in Everett Harbor.  In the southern region, samples that 
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provided the highest responses were collected in Budd Inlet, Commencement Bay and several of 
its adjoining waterways. 

These tests were performed in NOAA surveys in 9 areas where estimates of spatial extent could 
be made: northern, central, and southern Puget Sound (WA), northern Chesapeake Bay (MD), 
Sabine Lake (TX), Biscayne Bay (FL), Delaware Bay (DE), Galveston Bay (TX), and a 
collection of Southern California coastal estuaries (CA).  Based upon the critical values of 11.1 
and 37.1µg/g, the samples from central and southern Puget Sound ranked near the middle of the 
distribution for areas in which there are equivalent data (Table 37).  The HRGS responses greater 
than 11.1 µg/g represented the largest percent of study area toxic in samples from northern 
Chesapeake Bay, Southern California estuaries, southern Puget Sound, then central Puget Sound.  
Responses greater than 37.1 µg/g represented the largest percent of study area toxic in northern 
Chesapeake Bay, followed by southern Puget Sound, Delaware Bay, then central Puget Sound.  
In both the central and southern Puget Sound areas, HRGS responses greater than 11.1 µg/g were 
more widespread than in the combined national average (20%), whereas Puget Sound responses 
greater than 37.1 µg/g were less widespread than the national average of 9.2%. 

Responses among the 100 samples from southern Puget Sound ranged from 1.5 to 1994.9 
µgB[a]Peq/g.  There were 17 samples with responses >37.1 ug/g.  In central Puget Sound, HRGS 
assay responses ranged from 0.4 µg/g to 223 µg/g and there were 27 samples in which the 
responses exceeded 37.1 µg/g.  In northern Puget Sound, responses ranged from 0.3 µg/g to 
104.6 µg/g and only four samples had responses greater than 37.1 µg/g.  In analyses of 30 
samples from Charleston Harbor and vicinity, results ranged from 1.8 µg/g to 86.3 µg/g B[a]p 
equivalents and there were nine samples with results greater than 37.1 µg/g.  In the 121 samples 
from Biscayne Bay, results ranged from 0.4 to 37.0 µg/g B[a]p equivalents.  Induction responses 
in 30 samples from San Diego Bay were considerably higher than those from all other areas.  
Assay results ranged from 5 µg/g to 110 µg/g B[a]p equivalents and results from 18 samples 
exceeded 37.1 µg/g in San Diego Bay.  Responses in eight samples exceeded 80 µg/g.   

The percentages of samples from different survey areas with cytochrome P450 HRGS responses 
greater than 37.1 µg/g were:  60% in San Diego Bay, 30% in Charleston Harbor, 27% in central 
Puget Sound, 23% in Delaware Bay, 17% in southern Puget Sound, 11% in Sabine Lake, 4% in 
northern Puget Sound, 1% in Galveston Bay, and 0% in both Biscayne Bay and Southern 
California estuaries.  Based upon data from all NOAA surveys (n=693, including central and 
northern Puget Sound), the average and median HRGS assay responses were 23.3 µg/g and 6.7 
µg/g, somewhat lower than observed in central Puget Sound - average of 37.6 µg/g and median 
of 17.8 µg/g.   

The data from these comparisons suggest that the severity and spatial extent of enzyme induction 
determined in the HRGS test on central and southern Puget Sound samples were roughly 
equivalent to those determined as the national average.  There were several survey areas in 
which toxicity was more severe and widespread and several areas in which it was less so.  The 
responses were clearly more elevated than those in samples from northern Puget Sound. 

In all three regions of Puget Sound, the HRGS assay results showed highly significant 
correlations with the concentrations of PAHs in the samples.  The highest responses in these 
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assays focused attention upon samples from Everett Harbor, the lower Duwamish River/inner 
Elliott Bay, and the industrial waterways of Commencement Bay.  Follow-up experimentation 
with extracts from selected samples collected in these three industrialized areas was done to 
identify whether PAHs or dioxins and dioxin-like chlorinated chemicals were causing the 
elevated responses.  The experiments indicated that dioxins were important contributors to the 
HRGS induction in samples from Everett Harbor, whereas the PAHs appeared to be most 
important in samples from Elliott and Commencement Bays. 

Levels of Chemical Contamination 
There were 9 samples from southern Puget Sound, representing about 1% of the survey area, in 
which one or more ERM values were exceeded for all substances measured (excluding nickel) 
(Table 38).  In comparison, there were 17 and 10 samples in which one or more SQS or CSL 
values, respectively, were exceeded (>QL only).  Those samples represented about 7% and 5%, 
respectively, of the southern survey area.  In central Puget Sound, there were 21 samples in 
which one or more ERM values were exceeded for all chemicals measured (excluding nickel).  
These samples represented an area of about 1.6 % of the total survey area.  There were 93 
samples with at least one chemical concentration greater than an SQS value (91.4% of the area) 
and 92 samples with at least one concentration greater than a CSL value (99.3%) of the area 
(>QL only).  In northern Puget Sound, there were 9 samples representing about 9.5 km2 (or 1.2% 
of the total area) in which one or more ERMs were exceeded for all chemicals measured 
(excluding nickel).  There were 71 samples with at least one chemical concentration greater than 
an SQS value (68.5% of the area) and 58 samples with at least one concentration greater than a 
CSL value (56.1%) of the area (>QL only).  A large proportion of the samples form the northern 
and central regions were classified as contaminated due to the presence of elevated 
concentrations of benzoic acid, 4-methylphenol and phenol. 

In Biscayne Bay, 33 of 226 samples (15%) representing about 0.7% of the study area had 
equivalent chemical concentrations (Long et al., 1999b).  In selected small estuaries and lagoons 
of Southern California, 18 of 30 randomly chosen stations, representing 67% of the study area, 
had chemical concentrations that exceeded one or more Probable Effects Level (PEL) guidelines 
(Anderson et al., 1997).  In the combined NOAA/EPA database, 27% of samples had at least one 
chemical concentration greater than the ERM (Long et al., 1998).  In the Carolinian estuarine 
province, Hyland et al. (1996) estimated that the surficial extent of chemical contamination in 
sediments was about 16% relative to the ERMs.  In data compiled from three years of study in 
the Carolinian province, however, the size of the area with elevated chemical contamination 
decreased to about 5% (Dr. Jeff Hyland, NOAA, pers. comm.).  In data compiled by Dr. Hyland 
from stratified-random sampling in the Carolinian province, Virginian province, Louisianian 
province, northern Chesapeake Bay, Delaware Bay, and DelMarVa estuaries, the estimates of the 
spatial extent of contamination in which one or more ERM values were exceeded ranged from 
about 2% to about 8%. 

The four samples from the Commencement Bay waterways in which mean ERM quotients were 
greater than 1.0 represented 0.6 km2 or 0.07% of the southern survey area.  In central Puget 
Sound, there were 11 samples in which the mean ERM quotients exceeded 1.0.  These samples 
represented an area of 3.6 km2, or about 0.5% of the total survey area.  In the northern Puget 
Sound study, none of the mean ERM quotients for 100 samples exceeded 1.0.  In comparison, 6 
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of 226 samples (3%) from Biscayne Bay, FL, had mean ERM quotients of 1.0 or greater (Long et 
al., 1999b).  Among 1068 samples collected by NOAA and EPA in many estuaries nationwide, 
51 (5%) had mean ERM quotients of 1.0 or greater (Long et al., 1998).   

Collectively, the chemical data indicate that most of the southern Puget Sound sediment samples 
were not highly contaminated.  Relative to effects-based guidelines or standards, relative to 
previous Puget Sound studies, and relative to data from other areas in the U.S; the concentrations 
of most trace metals, most PAHs, total PCBs, and most chlorinated pesticides were not very high 
in the majority of the samples.  However, the concentrations of nickel, mercury, some phenols 
some phthalates, benzoic acid, PAHs, and PCBs were relatively high in some samples.   

The highest concentrations of mixtures of potentially toxic chemicals primarily occurred in 
samples from the waterways of Commencement Bay.   In central Puget Sound, highly 
contaminated samples were observed in parts of the Duwamish River/Elliott Bay and Sinclair 
Inlet, the two most highly urbanized and industrialized bays within the 1998 study area.  
Similarly, the sediments analyzed during the 1997 survey of northern Puget Sound indicated that 
chemical concentrations were highest in Everett Harbor, which was one of the most urbanized 
bays in that survey. 

Toxicity/Chemistry Relationships 

It was not possible to identify and confirm which chemicals caused toxic responses in the urchin 
fertilization, Microtox, and HRGS tests in the samples from Puget Sound.  Conclusive 
determinations of causality would require extensive toxicity identification evaluations and 
spiked sediment bioassays.  However, the chemical data were analyzed to determine which 
chemicals might have contributed to toxicity. 

Typically in surveys of sediment quality nationwide, NOAA has determined that complex 
mixtures of trace metals, organic chemicals, and occasionally ammonia showed strong statistical 
associations with one or more measures of toxicity (Long et al., 1996).  Frequently, as a result of 
the toxicity/chemistry correlation analyses, some number of chemicals will show the strongest 
associations leading to the conclusion that these chemicals may have caused or contributed to the 
toxicity that was observed.  However, the strength of these correlations can vary considerably 
among study areas and among the toxicity tests performed. 

In all three phases of the Puget Sound survey, the data were similar to those collected in several 
other regions (e.g., the western Florida Panhandle, Boston Harbor, and South Carolina/Georgia 
estuaries).  Severe toxicity in the amphipod tests was either not observed in any samples or was 
very rare, and, therefore, correlations with toxicity were not significant or were weak.  However, 
correlations with chemical concentrations were more readily apparent in the results of the 
sublethal tests, notably tests of urchin fertilization and microbial bioluminescence as in Puget 
Sound. 

The strong statistical correlations between the HRGS response and the concentrations of PAHs 
and other organic substances in the 1999 Puget Sound samples were similar to what was 
observed in the 1997 and 1998 phases of this survey.  Therefore, there appears to be a consistent 
response with this test among the three study areas, suggesting that complex mixtures of organic 
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substances were driving the response.  Furthermore, the highly significant correlations between 
enzyme induction in the HRGS assays and the concentrations of PAHs normalized to effects-
based guidelines or criteria suggest that these substances occurred at sufficiently high 
concentrations to contribute to the responses.  In contrast, the Microtox tests indicated strong 
correlations with mixtures of chemical concentrations in northern and southern Puget Sound, but 
much weaker or no significant correlations in the central region. 

The sea urchin tests performed on pore waters extracted from the sediments and the Microtox 
and HRGS tests performed on solvent extracts showed overlapping, but different, spatial patterns 
in toxicity in all three regions of Puget Sound. Because of the nature of these tests, it is 
reasonable to assume that they responded to different substances in the sediments.  The strong 
statistical associations between the results of the HRGS tests and the mean ERM quotients for 25 
substances provides evidence that mixtures of contaminants co-varying in concentrations could 
have contributed to these responses.   

Whereas the urchin fertilization tests showed strong correlations with chemical concentrations in 
central Puget Sound, these relationships were much weaker in northern and southern Puget 
Sound. Percent sea urchin fertilization was highly correlated (rho = -0.518, p<0.0001) with the 
mean ERM quotients for 25 substances and most of the individual classes of substances in 
central Puget Sound.  These correlations with mean ERM quotients (rho =-0.294, p<0.01) and 
classes of substances (ranging from not significant to significant at rho =-0.244, p<0.05) were 
weaker in northern region samples.  In the southern region samples, urchin fertilization also 
showed weak associations with mean ERM quotients (rho =-0.300, p<0.05) and most classes of 
substances (ranging from not significant to significant at rho = –0.362, p<0.01).  Correlations 
between percent urchin fertilization and mean SQS quotients for sums of 15 PAHs were -0.656 
(p<0.0001) in the central region -0.338 (p<0.05) in the southern region, and +0.087 (p>0.05) in 
the northern region.  However, in 15 samples from Everett Harbor and Port Gardner Bay, the 
correlation was very significant (rho =-0.788, p<0.001, n=15). 

The data showed that urchin fertilization was weakly associated (p<0.05) with several trace 
metals (notably arsenic, copper, lead, mercury, tin and zinc) in northern and central Puget Sound, 
but not in the southern region.  Some of these metals occurred at concentrations above their 
respective ERL and SQS levels in northern and central region samples.  The correlation 
coefficients for mean SQS quotients for 8 trace metals and percent urchin fertilization in 
northern, central, and southern regions were -0.319 (p<0.05), -0.557 (p<0.05), and -0.178 
(p>0.05), respectively.  Similarly, fertilization success was strongly correlated with the 
concentrations of PCBs in both central and northern Puget Sound, but not in the southern region.  
However, urchin fertilization was highly correlated with the concentrations of both high and low 
molecular weight PAHs in central Puget Sound, weakly correlated (p<0.01) with them in the 
southern region samples, but not in northern Puget Sound.   

Because the solvent extracts would not be expected to elute trace metals, Microtox and HRGS 
results were expected to show strong associations with concentrations of PAHs and other organic 
chemicals.  The data indicated that microbial bioluminescence decreased with increasing 
concentrations of most individual PAHs and most PCB congeners in the northern and southern 
samples, but not in the central region samples.  Microtox results were correlated with benzoic 
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acid and 4-methylphenol in the northern samples and carbazole and dibenzofuran in the northern 
and southern regions.  

There were very few similarities among the three studies in the correlations between benthic 
indices and toxicity results.  Results of the amphipod survival tests were not correlated with any 
benthic index in all three regions of the study.  The highly significant correlation between 
echinoderm abundance and urchin fertilization in northern Puget Sound was not observed in the 
other two regions.  Instead, urchin fertilization was correlated with annelid abundance in the 
central region and miscellaneous taxa abundance in the southern region.  Microtox EC50’s 
were positively correlated with taxa richness and Swartz’s dominance index in all three regions, 
although at different probability levels.  However, the highly significant correlation between 
Microtox results and Pielou’s index observed in the southern region was not observed 
elsewhere.   

The significant correlations between cytochrome P450 HRGS induction and both Pielou’s 
Evenness Index and Swartz’s dominance index was positive in the northern region and negative 
in central and southern sediments.  Conversely, HRGS induction was negatively correlated with 
total abundance in the northern region, whereas the correlations were positive in the central and 
southern regions.  

There were a few similarities among the three study areas in the relationships between benthic 
indices and chemical concentrations, but there were more differences.  For example, the data 
consistently indicated highly significant correlations between the guideline or criteria-
normalized concentrations of trace metals and taxa richness in all three areas.  Also, Swartz’s 
Dominance Index was highly correlated with trace metals and mean ERM quotients for 25 
substances in all three regions.  The abundance of molluscs was positively correlated with the 
SQS-normalized concentrations of LPAHs in all three regions.  Mollusc abundance also was 
positively correlated with HPAHs in the southern region.  This correlation was much weaker in 
the central region and not significant in the northern region.  The abundance of annelids was 
positively correlated with CSL-normalized concentrations of PAHs in the northern and southern 
regions, but this correlation was negative in the central region.  

The consistent relationships (i.e., observed in all three regions) between the concentrations of 
sediment-sorbed trace metals and both the numbers of species in the samples and the dominance 
index suggests that benthic infaunal species gradually were lost as trace metals concentrations 
increased.  However, most of the benthic/chemical correlations were inconsistent among the 
three regions.  The strong positive correlations between the abundance of both annelids and 
molluscs and the PAHs observed in the central and southern regions suggests that these animals 
were tolerant of the PAHs and attracted to the sampling areas by other ecological factors.  
However, these relationships were not apparent in the northern region. 

Although the chemicals for which analyses were performed may have caused or contributed to 
the measures of toxicity and/or benthic alterations, other substances for which no analyses were 
conducted also may have contributed.  Definitive determinations of the actual causes of toxicity 
in each test would require further experimentation.  Similarly, the inconsistent relationships 



 Page 60 

between measures of toxicity and indices of benthic structure suggest that the ecological 
relevance of the toxicity tests differed among the three regions of Puget Sound. 

Benthic Community Structure, the “Triad” Synthesis, and  
the Weight-of-Evidence Approach 
The abundance, diversity, and species composition of marine infaunal communities vary 
considerably from place to place and over both short and long time scales as a result of many 
natural and anthropogenic factors (Reish, 1955; Nichols, 1970; McCauley et al., 1976; Pearson 
and Rosenberg, 1978; Dauer et al., 1979; James and Gibson, 1979; Bellan-Santini, 1980; Gray, 
1982: Becker et al., 1987; Ferraro et al., 1991; Llansó et. al.,1998b).  Major differences in 
benthic communities can result from wide ranges in water depths, oxygen concentrations at the 
sediment-water interface, sediment texture (grain size), geochemical composition of the 
sediment particles, water salinity as a function of proximity to a river or stream, bottom water 
current velocity or physical disturbance as a result of natural scouring or maritime traffic, and the 
effects of predators.  In addition, the composition of benthic communities at any single location 
can be a function of seasonal or inter-annual changes in larval recruitment, availability of food, 
proximity to adult brood stock, predation, and habitat characteristics. 

In the survey of southern Puget Sound, samples were collected in the deep waters of the central 
basin (East Passage) and Hood Canal, in protected waters of several shallow embayments and 
coves, in scoured channels with strong tidal currents, and in the lower reaches of the highly 
industrialized Puyallup River.  As a result the abundance, composition, and diversity of benthic 
communities would be expected to differ considerably from place to place. 

Analyses of the benthic macroinfauna in the southern Puget Sound survey indicated that the vast 
majority of samples were populated by abundant and diverse infaunal assemblages.  The 
numbers of species and organisms varied considerably among sampling locations, indicative of 
the natural degree of variability in abundance, community structure, and diversity among benthic 
samples in Puget Sound.  The variability in benthic data for the southern region was equivalent 
to the ranges observed in the northern and central regions.  Calculated indices of evenness and 
dominance showed variability equal to that for species counts and abundance.  With huge ranges 
in abundance, species composition, and diversity as a result of natural environmental factors, it is 
difficult to discern the differences between degraded and un-degraded (or “healthy”) benthic 
assemblages.  Some benthic assemblages may have relatively low species richness and total 
abundance as a result of the effects of some natural environmental factors.  There were a number 
of stations in all three regions in which the benthos was very abundant and diverse despite the 
presence of high chemical concentrations and/or high toxicity. 

Both Long (1989) and Chapman (1996) provided recommendations for graphical and tabular 
presentations of data from the Sediment Quality Triad (i.e., measures of chemical contamination, 
toxicity, and benthic community structure).  The triad of measures was offered as an approach 
for developing a weight-of-evidence to classify the relative quality of sediments (Long, 1989).  
Chapman (1996) later suggested that locations with chemical concentrations greater than effects-
based guidelines or standards, and evidence of acute toxicity in laboratory tests (such as with the 
amphipod survival bioassays), and alterations to resident infaunal communities constituted 
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“strong evidence of pollution – induced degradation”.  As a corollary, he suggested that there 
was “strong evidence against pollution-induced degradation” at sites lacking contamination, 
toxicity, and benthic alterations.  Several other combinations were described in which mixed or 
conflicting results were obtained.  In some cases, sediments could appear to be contaminated, but 
not toxic, either with or without alterations to the benthos or in which sediments were not 
contaminated with measured substances, but, nevertheless, were toxic, either with or without 
benthic alterations.  Plausible explanations were offered for benthic “alterations” at non-
contaminated and/or non-toxic locations possibly attributable to natural factors, such as those 
identified above. 

When applied to the 1999 southern Puget Sound sediment data, the weight-of-evidence approach 
identified 11 stations (4.4 km2, 0.5% total study area) displaying sediment toxicity, chemical 
contamination, and altered benthos (i.e., “Degraded Quality” sediments, “strong evidence of 
pollution-induced degradation”).  In contrast, 36 stations (493.5 km2, 57.5% total study area) 
displayed no toxicity or chemical contamination, and abundant and diverse infaunal assemblages 
(i.e., “High Quality” sediments, “strong evidence against pollution-induced degradation”).  
Thirty-five stations (274.1 km2, 32.0% total study area) had one impaired sediment triad 
parameter (i.e., “Intermediate/High Quality” sediments), and the remaining 18 stations (85.7km2, 
10.0% total study area) displayed two impaired sediment parameters (i.e., 
“Intermediate/Degraded Quality” sediments).   

Comparison of the results of the weight-of-evidence sediment quality triad analyses for this 1999 
southern Puget Sound survey was made with both the 1997 and 1998 PSAMP/NOAA sediment 
surveys conducted in northern and central Puget Sound, respectively (Long et al. 1999a, 2000).  
Results are presented in Table 39. 

Throughout Puget Sound, 42 of the 300 stations sampled (14%) displayed sediment toxicity, 
chemical contamination, and altered benthos (i.e., “Degraded Quality” sediments, “strong 
evidence of pollution-induced degradation”).  These stations represented 35.1 km2, or 1.5% of 
the 3-year study area.  Central Puget Sound had the greatest number of these degraded quality 
stations (21, 20.4 km2, 2.8% of central study area), while there were 10 in northern (10.3 km2, 
1.3% of study area) and 11 in southern (4.4 km2, 0.5% of study area) Puget Sound.  As seen in 
the 1999 data, stations throughout Puget Sound which displayed degraded sediment quality 
represented a small area (0.02-9.65 km2, mean = 0.8 + 1.6 standard deviation), shallow (3-122m, 
mean = 20 + 25 standard deviation) embayments located primarily in major urban settings, 
including Everett Harbor and Port Gardner; Sinclair and Dyes Inlets; Port Washington Narrows; 
Elliott Bay and the Duwamish; Port Gamble; the Port of Olympia; and the Thea Foss, Middle, 
and Hylebos Waterways.  The majority of these stations had relatively fine grain size (11-96% 
fines, mean = 69 + 20 standard deviation) and high TOC (0.52-9.91%TOC, mean = 3.3+ 2.2 
standard deviation) values.   Infaunal assemblages typically had higher total abundance values 
(0-3764, mean = 892 + 756 standard deviation)(typically due to large numbers of one or two 
dominant taxa), moderate taxa richness (0-93 taxa, mean = 45 + 22 standard deviation) and 
evenness (0-0.82, mean = 0.53 + 0.17 standard deviation), and low dominance values (0-16 SDI, 
mean = 4.6 + 3.1 standard deviation).  They were typically dominated by annelids, a few taxa 
often in extremely high abundance, followed by molluscs, arthropods, echinoderms, and 
miscellaneous taxa.  The polychaete species Aphelochaeta sp. N1, Aphelochaeta monilaris, 
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Capitella capitata hyperspecies, and Scoletoma luti; the mollusc Axinopsida serricata; the 
arthropod Eudorella pacifica, Euphilomedes carcharodonta, Nebalia pugettensis complex, and 
Pinnixa schmitti; and other species dominated the infaunal assemblage at many of these stations.  
The sediment from these stations displayed a wide variety of chemical contaminants and toxic 
responses, reflective of the various types of anthropogenic activity in the surrounding areas. 

Throughout Puget Sound, 64 of the 300 stations sampled (21.3%) displayed no toxicity or 
chemical contamination, and abundant and diverse infaunal assemblages (i.e., “High Quality” 
sediments, “strong evidence against pollution-induced degradation”).  These stations represented 
764.9 km2, or 32.4% of the 3-year study area.  Southern Puget Sound had the greatest number of 
these high quality stations (36, 493.5 km2, 57.5% of southern study area), while there were 26 in 
northern (211.9 km2, 27.4% of study area) and only 2 in central (59.5 km2, 8.1% of study area) 
Puget Sound.  There were, however, 23 stations in central Puget Sound that would have fallen in 
this category but had one chemical, benzoic acid, above state sediment criteria.  As seen in the 
1999 data, stations throughout Puget Sound which displayed high sediment quality typically 
included the larger (0.84-52.94 km2, mean = 12.0 + 11.5 standard deviation), deeper (2 - 170m, 
mean = 48 + 47 standard deviation) inlets, basins, and passages of the more rural areas of Puget 
Sound and Hood Canal.  These stations were located in Semiahmoo, West Boundary, 
Bellingham, Samish, Fidalgo, and Skagit Bays; March Point; South Saratoga Passage; Port 
Susan; Possession Sound; Port Gardner; the Snohomish River Delta; Port Townsend; South 
Admiralty Inlet; Port Ludlow; Hood Canal; Quilcene and Dabob Bays; Totten, Eld, Henderson, 
Case, and Carr Inlets; Pickering Passage/Squaxin Island; Nisqually Reach; Drayton, Hale, East 
Anderson Island/No.Cormorant, Colvos, and East Passages; Quartermaster Harbor; and 
Commencement Bay.  A few of these stations, however, were located close to urban areas in 
Bellingham Bay.  These stations with “high quality” sediments tended to have coarser sediment 
(<1-102 % fines, mean = 45 + 37 standard deviation), with lower TOC (0.06-4.20% TOC, mean 
= 1.21 + 1.00 standard deviation) content than those stations with degraded sediment quality.  
Infaunal assemblages at these stations had lower total abundance (24-5125, mean = 734 + 982 
standard deviation), moderate taxa richness (6-104 taxa, mean = 55 + 24 standard deviation), and 
higher evenness (0.25-0.92, mean = 0.71 + 0.14 standard deviation) and dominance values (1-31 
SDI, mean = 12 + 8 standard deviation) than those stations with degraded sediment quality.   

There were 125 (41.7%) of the 300 stations (1226.4km2, 51.9% total study area) with one 
impaired sediment triad parameter (i.e., intermediate/high quality sediments).  They included 
stations with characteristics similar to those with high quality sediments.  The remaining 69 
(23%) of the 300 stations (336.8 km2, 14.3% total study area) displayed two impaired sediment 
parameters (i.e., intermediate/degraded quality sediments), and in many cases included stations 
with characteristics similar to those with degraded sediments.   

Because of the natural differences in benthic communities among different estuaries, it is 
difficult to compare the communities from Puget Sound with those from other regions in the U.S.   
However, benthic data have been generated by the Estuaries component of the Environmental 
Monitoring and Assessment Program (EMAP) using internally consistent methods.  A summary 
(Long, 2000) of the data from three estuarine provinces (Virginian, Louisianian, Carolinian) 
showed ranges in results for measures of species richness, total abundance, and a multi-
parameter benthic index.  The samples with relatively low species richness represented 5%, 4%, 
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and 10% of the survey areas, respectively.  Those with relatively low infaunal abundance 
represented 7%, 19%, and 22% of the areas, respectively.  Samples with low benthic index 
scores represented 23%, 31%, and 20% of the areas.  In the Regional EMAP survey of the New 
York/New Jersey Harbor area, samples classified as having degraded benthos represented 53% 
of the survey area (Adams et al., 1998).  In contrast, it appears that benthic conditions that might 
be considered degraded occurred much less frequently in Puget Sound than in all of these other 
areas. 
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Conclusions  
• In the 1999 survey of southern Puget Sound, laboratory tests of 100 samples indicated 

overlapping, but, different, patterns in toxicity. Based upon analysis of all the data combined, 
several spatial patterns were apparent in this survey. Most obvious were the toxic responses 
in the two tests of organic solvents observed in some of the industrialized waterways of 
Commencement Bay at Tacoma.  The responses in the three samples from Thea Foss 
Waterway were very high in both the HRGS and Microtox tests. Significant responses 
were also observed in both the amphipod and urchin tests in one of the samples.  The degree 
of toxicity in Hylebos and Middle waterways was lower, but, nonetheless, represented 
conditions considerably different from those reported elsewhere in the survey area.  The 
toxicity observed in the waterways gradually diminished into the outer reaches of the bay and 
decreased again into East Passage. 

• Other industrialized harbors of southern Puget Sound in which sediments induced toxic 
responses included Port of Olympia, Oakland Bay at Shelton, Gig Harbor, and Port Ludlow.  
In each case, the toxic responses diminished sharply with increasing distance from these 
harbors.  Sediments in most of the South Sound inlets and passages were relatively 
homogeneous, i.e., not toxic in any of the tests.  However, based upon the HRGS and 
Microtox tests of organic solvents, conditions in the southern Puget Sound inlets and 
channels were different (i.e., worse) than in the majority of Hood Canal. The patterns of 
toxicity in the southern Puget Sound, i.e., toxic conditions restricted mainly to industrialized 
harbors and improving quickly into more rural or undeveloped areas or into the main basin, 
also were observed in the studies of northern and central Puget Sound. 

• The spatial extent of toxicity was estimated by weighting the results of each test to the sizes 
of the sampling strata.  The total study area was estimated to represent about 858 kilometer2.  
The area in which highly significant toxicity occurred totaled 0% of the total area in the 
amphipod survival tests; 5.7% of the area in urchin fertilization tests of 100% pore waters; 
0.2% of the area in microbial bioluminescence tests; and 5-38% of the area in the 
cytochrome P450 HRGS assays. The estimates of the spatial extent of toxicity measured in 
these tests of southern Puget Sound sediments generally were lower than the “national 
average” estimates compiled from many other surveys previously conducted by NOAA. 
Generally, they were comparable to the estimates for northern Puget Sound, but somewhat 
higher than what was observed in the central region.  In the cytochrome P450 HRGS assays, 
a relatively high proportion of samples caused moderate responses.  These data suggest that 
southern Puget Sound sediments were not unusually toxic relative to sediments from other 
areas.  The large majority of the area surveyed was classified as non-toxic in these tests.  
However, the data from the HRGS assays indicated a slight to moderate response among 
many samples. 

• Twenty of the 100 samples collected had one or more chemical concentrations that exceeded 
applicable NOAA guidelines and/or Washington state criteria.  Among these samples, 
chemical contamination was highest in eight samples collected in or near the industrialized 
waterways of Commencement Bay.  Samples from the Thea Foss and Middle Waterways 
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were primarily contaminated with a mixture of PAHs and trace metals, whereas those from 
Hylebos Waterway were contaminated with chlorinated organic hydrocarbons.  The 
remaining 12 samples with elevated chemical concentrations primarily had high levels of 
other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and 
phenol.  There was a distinct spatial pattern in contamination in Commencement Bay (i.e., 
high concentrations in the waterways diminished rapidly into the outer reaches of the bay).  
However, there were no other equally clear gradients elsewhere in the study area. 

• For all trace metals (excluding nickel), there were a total of 4 (ERM), 3 (SQS), and 3 (CSL) 
samples exceeding guidelines or criteria levels, encompassing a total of 0.84, 0.68, and 
0.68%, respectively, of the total study area.  Significant metals contamination occurred in 
Port Gamble Bay, Totten Inlet, and in both the Thea Foss and Middle Waterways of 
Commencement Bay, and mercury was the most commonly found contaminant.  There were 
a total of 6, 4, and 1 samples with PAHs exceeding ERM, SQS, and CSL values, 
respectively, encompassing a total of 0.30, 0.23, and <0.01% of the total study area.  
Contaminants were again located in Port Gamble Bay and Commencement Bay, including 
both the Thea Foss and Middle Waterways.  PCB chemicals exceeded guidelines and criteria 
in 2 (ERM) and 3 (SQS) stations in the Thea Foss and Hylebos Waterways, representing 0.04 
and 0.07% of the study area.  Other organic chemicals, including benzoic acid, benzyl 
alcohol exceeded SQS and CSL values in 5 or fewer samples, representing roughly 3% or 
less of the study area, including stations in Budd Inlet, Port of Olympia, Henderson Inlet, E. 
Anderson Island, and Hale and Pickering Passages.  Hexachlorobenzene values exceeded the 
SQS value at all three stations in the Hylebos Waterway (0.08% of the study area). 

• The highest chemical concentrations invariably were observed in samples collected in the 
urbanized bays, namely the waterways adjoining Commencement Bay.  Slight degrees of 
contamination also were apparent in some samples from Port Ludlow, Port Gamble Bay, Port 
of Olympia, Shelton Harbor, and Gig Harbor.  Areas with lowest chemical concentrations 
included most of Hood Canal and many of the southern Puget Sound inlets and passages. 

• Toxicity tests performed for urchin fertilization, microbial bioluminescence, and cytochrome 
HRGS enzyme induction indicated correspondence with complex mixtures of potentially 
toxic chemicals in the sediments.  Often, the results of the Microtox and cytochrome P450 
HRGS tests showed the strongest correlations with chemical concentrations.  Whereas the 
urchin fertilization tests showed correlations with chemical concentrations in northern and 
central Puget Sound, they failed to indicate such patterns in southern Puget Sound.  As 
expected, given the nature of the tests, results of the cytochrome P450 HRGS assay were 
highly correlated with concentrations of high molecular weight PAHs and other organic 
chemicals known to induce this enzymatic response.  In some cases, samples that were 
highly toxic in the cytochrome P450 HRGS tests had chemical concentrations that exceeded 
numerical, effects-based, sediment quality guidelines or criteria, further suggesting that these 
chemicals could have caused or contributed to the observed biological response.  The 
relationships between the HRGS response and concentrations of PAHs were also observed in 
central and northern Puget Sound.   
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• As with the previous infaunal assemblage studies conducted in north and central Puget 
Sound (Long, et al. 1999a, 2000), benthic infaunal assemblages in south Puget Sound display 
a wide variety of characteristics in different locations and habitat types throughout the study 
area.  Infaunal assemblages examined typically displayed relatively high abundance, taxa 
richness, evenness, and dominance values.  Polychaetes were typically the most abundant 
taxa group (up to 93% of the infaunal composition), followed by arthropods (up to 75%), 
mollusks (up to 70%), echinoderms (up to 55%), and miscellaneous taxa (up to 33%).  Two 
samples collected in the Port of Olympia near a superfund cleanup site had no living 
organisms in them.   

• In general, many of the small embayments and inlets throughout the study area had infaunal 
assemblages with relatively low total abundance, taxa richness, evenness, and dominance 
values.  In some of the small urban/industrial embayments however, cases were found where 
total abundance values were very high, typically due to high abundance of one organism 
such as the polychaete Aphelochaeta sp. N1; the mollusk Axinopsida serricata; the arthropod 
Aoroides spinosus; or the echinoderm Amphiodia urtica/periercta complex.  The majority of 
the samples collected from passages, outer embayments, and larger bodies of water tended to 
possess infaunal assemblages with higher total abundance, taxa richness, evenness, and 
dominance values. 

• Statistical analyses of the toxicity data and benthic data revealed few consistent patterns. 
Results of the Microtox tests and HRGS assays, on the other hand, showed strong 
correlations with indices of evenness and dominance that were highly significant.  As 
Microtox bioluminescence EC50 values decreased (indicating increasing toxicity), the 
evenness index and the numbers of dominant species also decreased.  As HRGS induction 
increased (indicative of exposure of toxicants), the indices of evenness and dominance 
decreased.  

• The relationships between measures of benthic structure and chemical concentrations showed 
mixed results. Both taxa richness and the dominance index were negatively correlated with 
the concentrations of trace metals in the samples.  Total abundance and taxa richness were 
highly correlated with the concentrations of PAHs in the samples.  However, these 
correlations were positive, indicating that the abundance of the benthos and the numbers of 
species increased as the concentrations of PAHs increased.  In addition, the abundance of 
annelids and molluscs showed increasing abundance with increasing PAH concentrations.  
The data suggest that the benthos was tolerant of the chemical concentrations in these 
samples and attracted to the sampled areas by other ecological factors, such as high organic 
matter. 

• A weight-of-evidence approach, used to simultaneously examine all three “sediment triad” 
parameters measured and define each station based on the number of impaired parameters 
measured at the station, generated four categories of sediment quality, including “high 
quality” (none of the sediment triad parameters impaired), “intermediate/high quality” (one 
sediment triad parameter impaired), “intermediate/degraded quality” (two sediment triad 
parameters impaired), and “degraded quality” (all of the sediment triad parameters impaired). 
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• There were 11 stations (4.4 km2, 0.5% total study area) with sediment toxicity, chemical 
contamination, and altered benthos (i.e., “degraded sediment quality”).  Typically, these 
stations were shallow, represented a small area, were primarily located in major urban areas, 
and had relatively fine grain size and high TOC values.  Infaunal assemblages typically had 
higher total abundance (usually due to one or two abundant dominant organisms), moderate 
taxa richness and evenness, lower dominance values, and were dominated by annelids 
(sometimes in high abundance), followed by molluscs, arthropods, echinoderms, and 
miscellaneous taxa.  The polychaete species Aphelochaeta sp. N1 was the dominant taxa at 
ten of the eleven stations. 

• In contrast, 36 stations (493.5 km2, 57.5% total study area) displayed no toxicity or chemical 
contamination, and supporting abundant and diverse infaunal assemblages.  These stations 
typically included the larger, deeper inlets, basins, and passages of the more rural areas of 
south Puget Sound and Hood Canal, as well as a few smaller embayments.  They tended to 
have coarser sediment with lower TOC content than those stations with degraded sediment 
quality.  Infaunal assemblages at these stations had lower total abundance, and higher 
evenness and dominance values than those stations with degraded sediment quality.   

• Thirty-five stations (274.1 km2, 32.0% total study area) had one impaired sediment triad 
parameter (i.e., intermediate/high quality sediments), and included stations with 
characteristics similar to those with high quality sediments.  The remaining 18 stations 
(85.7km2, 10.0% total study area) displayed two impaired sediment parameters (i.e., 
intermediate/degraded quality sediments), and included stations with characteristics similar 
to those with degraded sediments.   

• The number of stations displaying degraded sediments based upon the sediment quality triad 
of data was slightly greater in the central Puget Sound than in the northern and southern 
Puget Sound study areas, with the percent of the total study area degraded in each region 
decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively).  In comparison 
with data from other marine bays and estuaries surveyed by NOAA using the same methods, 
sediments in Puget Sound were among the least contaminated and toxic. 

• Data from these surveys of Puget Sound sediment quality provide the basis for quantifying 
changes in sediment quality, if any, in future years.  A stratified-random sampling design will 
be used along with similar suite of analytical methods in future surveys to generate 
comparable data, allowing the state of Washington to measure changes in sediment quality in 
terms of the percentage of the area that is degraded.  
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Figure 1.  Map of the southern Puget Sound study area for the NOAA/PSAMP Bioeffects 
Survey.  The areas sampled during 1999 are outlined. 
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Figure 2.  Map of 1999 southern Puget Sound survey area, SEDQUAL stations where 
chemical contaminants in sediment samples exceeded Washington State Sediment Quality 
Standards (SQS) and Puget Sound Marine Sediment Cleanup Screening Levels (CSL). 
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Figure 3a.  Southern Puget Sound sampling strata for the PSAMP/NOAA Bioeffects 
Survey, all strata. 
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Figure 3b.  Southern Puget Sound sampling stations for the 1999 PSAMP/NOAA Bioeffects 
Survey, Admiralty Inlet through Hood Canal (strata 1 through 7).  (Strata numbers are 
shown in bold.  Stations are identified as sample number). 
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Figure 3c.  Southern Puget Sound sampling stations for the 1999 PSAMP/NOAA Bioeffects 
Survey, Pickering Passage through Henderson Inlet (8 through 15).  (Strata numbers are 
shown in bold.  Stations are identified as sample number). 
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Figure 3d.  Southern Puget Sound sampling stations for the 1999 PSAMP/NOAA Bioeffects 
Survey, Case Inlet, Carr Inlet, and vicinity of Anderson and Fox Island (strata 16 through 
21).  (Strata numbers are shown in bold.  Stations are identified as sample number). 
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Figure 3e.  Southern Puget Sound sampling stations for the 1999 PSAMP/NOAA  
Bioeffects Survey, Colvos Passage, Gig Harbor, Quartermaster Harbor, East Passage, and 
Commencement Bay (strata 22 through 33).  (Strata numbers are shown in bold.  Stations 
are identified as sample number). 
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Figure 4.  Summary of 1999 amphipod survival tests (top symbols) and sea urchin 
fertilization tests (in three porewater concentrations, bottom symbols) for stations in 
Admiralty Inlet through Hood Canal (strata 1 through 7).  (Strata numbers are shown in 
bold.  Stations are identified as sample number). 
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Figure 5.  Summary of 1999 amphipod survival tests (top symbols) and sea urchin 
fertilization tests (in three porewater concentrations, bottom symbols) for stations in 
Pickering Passage through Henderson Inlet (8 through 15).  (Strata numbers are shown in 
bold.  Stations are identified as sample number). 
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Figure 6.  Summary of 1999 amphipod survival tests (top symbols) and sea urchin 
fertilization tests (in three porewater concentrations, bottom symbols) for stations in Case 
Inlet, Carr Inlet, and vicinity of Anderson and Fox Island (strata 16 through 21).  (Strata 
numbers are shown in bold.  Stations are identified as sample number). 
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Figure 7.  Summary of 1999 amphipod survival tests (top symbols) and sea urchin 
fertilization tests (in three porewater concentrations, bottom symbols) for stations in 
Colvos Passage, Gig Harbor, Quartermaster Harbor, East Passage, and Commencement 
Bay (strata 22 through 33).  (Strata numbers are shown in bold.  Stations are identified as 
sample number). 
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Figure 8.  Results of 1999 Microtox bioluminescence tests for stations in Admiralty Inlet 
through Hood Canal (strata 1 through 7).  (Strata numbers are shown in bold.  Stations are 
identified as sample number). 
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Figure 9.  Results of 1999 Microtox bioluminescence tests for stations in Pickering 
Passage through Henderson Inlet (8 through 15).  (Strata numbers are shown in bold.  
Stations are identified as sample number). 
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Figure 10.  Results of 1999 Microtox bioluminescence tests for stations in Case Inlet, Carr 
Inlet, and vicinity of Anderson and Fox Island (strata 16 through 21).  (Strata numbers are 
shown in bold.  Stations are identified as sample number). 
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Figure 11.  Results of 1999 Microtox bioluminescence for stations in Colvos Passage, Gig 
Harbor, Quartermaster Harbor, East Passage, and Commencement Bay (strata 22 through 
33).  (Strata numbers are shown in bold.  Stations are identified as sample number). 
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Figure 12.  Results of 1999 cytochrome P450 HRGS assays (as B[a]P equivalents (µg /g)) 
for stations in Admiralty Inlet through Hood Canal (strata 1 through 7).  (Strata numbers 
are shown in bold.  Stations are identified as sample number). 
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Figure 13.  Results of 1999 cytochrome P450 HRGS assays (as B[a]P equivalents (µg /g)) 
for stations in Pickering Passage through Henderson Inlet (8 through 15).  (Strata numbers 
are shown in bold.  Stations are identified as sample number). 
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Figure 14.  Results of 1999 cytochrome P450 HRGS assays (as B[a]P equivalents (µg/g)) for 
stations in Case Inlet, Carr Inlet, and vicinity of Anderson and Fox Island (strata 16 
through 21).  (Strata numbers are shown in bold.  Stations are identified as sample 
number). 
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Figure 15.  Results of 1999 cytochrome P450 HRGS assays (as B[a]P equivalents (µg /g)) 
for stations in Colvos Passage, Gig Harbor, Quartermaster Harbor, East Passage, and 
Commencement Bay (strata 22 through 33).  (Strata numbers are shown in bold.  Stations 
are identified as sample number). 
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Figure 16.  Sampling stations in Admiralty Inlet through Hood Canal (strata 1 through 7) 
with sediment chemical concentrations exceeding numerical guidelines and Washington 
State criteria.  (Strata numbers are shown in bold.  Stations are identified as sample 
number). 
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Figure 17.  Sampling stations in Pickering Passage through Henderson Inlet (8 through 15) 
with sediment chemical concentrations exceeding numerical guidelines and Washington 
State criteria.  (Strata numbers are shown in bold.  Stations are identified as sample 
number). 
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Figure 18.  Sampling stations in Case Inlet, Carr Inlet, and vicinity of Anderson and Fox 
Island (strata 16 through 21) with sediment chemical concentrations exceeding numerical 
guidelines and Washington State criteria.  (Strata numbers are shown in bold.  Stations are 
identified as sample number). 
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Figure 19.  Sampling stations in Colvos Passage, Gig Harbor, Quartermaster Harbor, East 
Passage, and Commencement Bay (strata 22 through 33) with sediment chemical 
concentrations exceeding numerical guidelines and Washington State criteria.  (Strata 
numbers are shown in bold.  Stations are identified as sample number). 



Page 102 

-200.0
0.0

200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0
1600.0
1800.0
2000.0
2200.0

0 1 2 3 4 5
mean ERM quotients for 25 substances

Cy
to

ch
ro

m
e 

P-
45

0 
HR

G
S 

(B
[a

]P
Eq

 (m
g/

g)
)

Rho = 0.805
P ≤ 0.0001 Sample 294

 
Figure 20.  Relationship between cytochrome P450 HRGS response and the mean ERM 
quotients for 25 chemical substances (definition - p. 23) in southern Puget Sound sediments 
sampled during 1999. 
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Figure 21.  Relationship between cytochrome P450 HRGS response and the sum of 13 
polynuclear aromatic hydrocarbons in southern Puget Sound sediments sampled during 
1999. 



Page 103 

-200.0

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

0 1 2 3 4 5
mean ERM quotients for 25 substances

M
ic

ro
to

xTM
 E

C5
0s

 a
s 

pe
rc

en
t o

f c
on

tro
l Rho = -0.536

P ≤ 0.0001

 
Figure 22.  Relationship between microbial bioluminescence and the mean ERM quotients 
for 25 chemical substances in southern Puget Sound sediments sampled during 1999. 
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Figure 23.  Relationship between microbial bioluminescence and the sum of 13 polynuclear 
aromatic hydrocarbons in southern Puget Sound sediments sampled during 1999. 
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Figure 24.  Relationship between cytochrome P450 HRGS response and the sum of all low 
molecular weight polynuclear aromatic hydrocarbons in southern Puget Sound sediments 
sampled in 1999. 
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Figure 25.  Relationship between cytochrome P450 HRGS response and the sum of all high 
molecular weight polynuclear aromatic hydrocarbons in southern Puget Sound sediments 
sampled during 1999. 
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Figure 26.  Relationship between cytochrome P450 HRGS response and the total of all 
polynuclear aromatic hydrocarbons in southern Puget Sound sediments sampled during 
1999. 
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Figure 27.  Classification of sediment quality at southern Puget Sound stations sampled 
during 1999 PSAMP/NOAA survey according to the Sediment Quality Triad of 
measurements – Admiralty Inlet through Hood Canal (strata 1 through 7).  (Strata 
numbers are shown in bold.  Stations are identified as sample number). 
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Figure 28.  Classification of sediment quality at southern Puget Sound stations sampled 
during 1999 PSAMP/NOAA survey according to the Sediment Quality Triad of 
measurements – Pickering Passage through Henderson Inlet (strata 8 through 15).  (Strata 
numbers are shown in bold.  Stations are identified as sample number). 
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Figure 29.  Classification of sediment quality at southern Puget Sound stations sampled 
during 1999 PSAMP/NOAA survey according to the Sediment Quality Triad of 
measurements – Case Inlet, Carr Inlet, and vicinity of Anderson and Fox Island (strata 16 
through 21).  (Strata numbers are shown in bold.  Stations are identified as sample 
number). 
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Figure 30.  Classification of sediment quality at southern Puget Sound stations sampled 
during 1999 PSAMP/NOAA survey according to the Sediment Quality Triad of 
measurements – Colvos Passage, Gig Harbor, Quartermaster Harbor, East Passage, and 
Commencement Bay (strata 22 through 33).  (Strata numbers are shown in bold.  Stations 
are identified as sample number). 
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Table 1.  Southern Puget Sound sampling strata for the PSAMP/NOAA Bioeffects Survey. 

Stratum 
Number 

Stratum Name Area  
(857.68 km2)

% of Total 
Area 

    
1 Port Ludlow 4.69 0.55 
2 Hood Canal (north) 107.04 12.48 
3 Port Gamble Bay 4.14 0.48 
4 Quilcene Bay 2.58 0.30 
5 Dabob Bay 55.71 6.50 
6 Hood Canal (central) 109.13 12.72 
7 Hood Canal (south) 33.10 3.86 
8 Port of Shelton 45.70 5.33 
9 Oakland Bay 9.82 1.15 
10 Totten Inlet 17.15 2.00 
11 Eld Inlet 11.99 1.40 
12 Budd Inlet 16.36 1.91 
13 Port of Olympia 0.81 0.09 
14 Pickering Passage/Squaxin Island 31.56 3.68 
15 Henderson Inlet 4.93 0.57 
16 Case Inlet 62.55 7.29 
17 Nisqually Reach 35.73 4.17 
18 Drayton Passage 20.16 2.35 
19 East Anderson Island/No. Cormorant Passage 49.51 5.77 
20 Carr Inlet 79.81 9.31 
21 Hale Passage 10.88 1.27 
22 Gig Harbor 0.55 0.06 
23 Colvos Passage 41.65 4.86 
24 Quartermaster Harbor 10.27 1.20 
25 East Passage 67.79 7.90 
26 Outer Commencement Bay 12.96 1.51 
27 S. E. Commencement Bay (shoreline) 2.36 0.27 
28 S. E.  Commencement Bay 3.16 0.37 
29 N.E. Commencement Bay 3.32 0.39 
30 Thea Foss Waterway 0.38 0.04 
31 Middle Waterway 0.05 0.01 
32 Blair Waterway 1.16 0.14 
33 Hylebos Waterway 0.67 0.08 
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Table 2.  Chemical and physical parameters measured for sediments collected from 
southern Puget Sound. 
Related Parameters 
Grain Size 
Total organic carbon 
 
Metals 
Ancillary Metals 
Aluminum 
Barium 
Calcium 
Cobalt 
Iron 
Magnesium 
Manganese 
Potassium 
Sodium 
Vanadium 
 
Priority Pollutant Metals 
Antimony 
Arsenic 
Beryllium 
Cadmium 
Chromium 
Copper 
Lead 
Mercury 
Nickel 
Selenium 
Silver 
Thallium 
Zinc 
 
Major Elements 
Silicon 
 
Trace Elements 
Tin 
 
Organics 
Chlorinated Alkanes 
Hexachlorobutadiene 
 

Chlorinated and Nitro-Substituted 
Phenols 
Pentachlorophenol 
 
Chlorinated Aromatic Chemicals 
1,2,4-trichlorobenzene 
1,2-dichlorobenzene 
1,3-dichlorobenzene 
1,4-dichlorobenzene 
2-chloronaphthalene 
Hexachlorobenzene 
 
Chlorinated Pesticides 
2,4'-DDD 
2,4'-DDE 
2,4'-DDT 
4,4'-DDD 
4,4'-DDE 
4-4'DDT 
Aldrin 
Alpha-chlordane 
Alpha-HCH 
Beta-HCH 
Chlorpyrifos 
Cis-nonachlor 
Delta-HCH 
Dieldrin 
Endosulfan I (Alpha-endosulfan) 
Endosulfan II (Beta-endosulfan) 
Endosulfan sulfate 
Endrin 
Endrin ketone 
Endrin aldehyde 
Gamma-chlordane 
Gamma-HCH 
Heptachlor 
Heptachlor epoxide 
Methoxychlor 
Mirex 
Oxychlordane 
Toxaphene 
Trans-nonachlor 
 



Page 113 

Polynuclear Aromatic Hydrocarbons 
LPAHs 
1,6,7-Trimethylnaphthalene 
1-Methylnaphthalene 
1-Methylphenanthrene 
2,6-Dimethylnaphthalene 
2-methylnapthalene 
2-methylphenanthrene 
Acenaphthene 
Acenaphthylene 
Anthracene 
Biphenyl  
C1 - C3 Fluorenes 
C1 - C3 Dibenzothiophenes 
C1 - C4 naphthalenes 
C1 - C4 Phenanthrenes 
Dibenzothiophene 
Fluorene 
Naphthalene 
Phenanthrene 
Retene 
calculated value: 
LPAH 
HPAHs 
Benzo(a)anthracene 
Benzo(a)pyrene 
Benzo(b)fluoranthene 
Benzo(e)pyrene 
Benzo(g,h,i)perylene 
Benzo(k)fluoranthene 
C1 - C4 Chrysene 
C1- Fluoranthene 
Chrysene 
Dibenzo(a,h)anthracene 
Fluoranthene 
Indeno(1,2,3-c,d)pyrene 
Perylene 
Pyrene 
calculated values: 
total Benzofluoranthenes 
HPAH 
 
Miscellaneous Extractable Chemicals 
Benzoic acid 
Benzyl alcohol 

Dibenzofuran 
 
Organonitrogen Chemicals 
N-nitrosodiphenylamine 
9(H) Carbazole 
 
Organotins 
Butyl tins:  Di-, Mono-, Tetra-, Tri-butyltin 
 
Phenols 
2,4-dimethylphenol 
2-methylphenol 
4-methylphenol 
Phenol 
P-nonylphenol 
 
Phthalate Esters 
Bis(2-ethylhexyl)phthalate 
Butyl benzyl phthalate 
Diethyl phthalate 
Dimethyl phthalate 
Di-n-butyl phthalate 
Di-n-octyl phthalate 
 
Polychlorinated Biphenyls 
PCB Congeners: 
8 
18 
28 
44 
52 
66 
77 
101 
105 
118 
126 
128 
128 
153 
170 

180 
187 
195 
206 
209 
 
PCB Aroclors: 
1016 
1221 
1232 
1242 
1248 
1254 
1260 
1262 
1268 

 

Table 2.  Concluded.
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Table 3.  Chemistry Parameters: Laboratory analytical methods and reporting 
limits. 

Parameter Method Reference Practical 
Quantitation 

Limit 
Grain Size Sieve-pipette method PSEP, 1996a >2000 to 

<3.9 microns 
Total Organic 
Carbon 

Conversion to CO2 
measured by 
nondispersive infra-red 
spectroscopy 

PSEP, 1986 0.1 % 

Metals  
(Partial digestion) 

Strong acid (aqua regia) 
digestion and analyzed via 
ICP, ICP-MS, or GFAA, 
depending upon the 
analyte 

- digestion - PSEP, 1996c 
EPA 3050 
- analysis - PSEP, 1996c 
(EPA 200.8, 206.2, 270.2), 
(SW6010) 

1-10 ppm 

Metals 
(Total digestion) 

Hydrofluoric acid-based 
digestion and analyzed via 
ICP or GFAA, depending 
upon the analyte 

- digestion - PSEP, 1996c 
EPA 3052 
- analysis - PSEP, 1996c  
(EPA 200.8, 206.2, 270.2), 
(SW6010) 

1-10 ppm 

Mercury Cold Vapor Atomic 
Absorption 

PSEP, 1996c  
EPA 245.5 

1-10 ppm 

Butyl Tins Solvent Extraction, 
Derivitization, Gas 
Chromatography/Mass 
Spectrometry in selected 
ion mode 

Manchester Method 
(Manchester Environmental 
Laboratory, 1997) 

40 µg/kg 

Base/Neutral/Acid 
Organic Chemicals 

Capillary column Gas 
Chromatography/ Mass 
Spectrometry  

PSEP 1996d, EPA 8270 & 
8081 

100-200 ppb 

Polynuclear 
Aromatic 
Hydrocarbons 
(PAH) 

Capillary column Gas 
Chromatography/ Mass 
Spectrometry  

PSEP 1996d, extraction 
following Manchester 
modification of EPA 8270 

100-200 ppb 

Chlorinated 
Pesticides and 
PCB (Aroclors) 

Gas Chromatography 
Electron Capture 
Detection 

PSEP 1996d, EPA 8081  1-5 ppb 

PCB Congeners  Lauenstein, G. G. and A. Y. 
Cantillo, 1993, EPA 8081 

1-5 ppb 
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Table 4.  Chemistry parameters: Field analytical methods and resolution. 

Parameter Method Resolution 

Temperature Mercury Thermometer 1.0 °C 

Surface salinity Refractometer 1.0 ppt 

 

Table 5.  Benthic infaunal indices calculated to characterize the infaunal 
invertebrate assemblages identified from each PSAMP/NOAA sampling station. 

Infaunal index Definition Calculation 
Total Abundance A measure of density equal to the 

total number of organisms per 
sample area 

Sum of all organisms counted in 
each sample 

Major Taxa 
Abundance 

A measure of density equal to the 
total number of organisms in each 
major taxa group (Annelida, 
Mollusca, Echinodermata, 
Arthropoda, Miscellaneous Taxa) per 
sample area 

Sum of all organisms counted in 
each major taxa group per 
sample 

Taxa Richness Total number of taxa (taxa = lowest 
level of identification for each 
organism) per sample area 

Sum of all taxa identified in each 
sample 

Pielou’s Evenness 
(J’) (Pielou, 1966, 
1974) 

Relates the observed diversity in 
benthic assemblages as a proportion 
of the maximum possible diversity 
for the data set (the equitability 
(evenness) of the distribution of 
individuals among species) 

J’ = H’/log s     
Where: 
         s 
H’ = - Σ pi log pi 

                i =1                                                             
where pi = the proportion of the 
assemblage that belongs to the 
ith species (p=ni/N, where nI=the 
number of individuals in the i 
species and N= total number of 
individuals), and where s = the 
total number of species  

Swartz’s 
Dominance Index 
(SDI)(Swartz et al., 
1985) 

The minimum number of taxa whose 
combined abundance accounted for 
75 percent of the total abundance in 
each sample 

Sum of the minimum number of 
taxa whose combined abundance 
accounted for 75 percent of the 
total abundance in each sample 
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Table 6.  Results of amphipod survival tests for 100 sediment samples from southern 
Puget Sound.  Tests performed with Ampelisca abdita. 

Stratum Location Sample Mean 
Amphipod 

survival 
(%) 

Mean 
Amphipod 

survival as % 
of control 

Statistical 
significance

     
1 Port Ludlow 206 90 103.00  
 207 84 97.00  
 208 84 93.33  
     
2 Hood Canal (north) 209 96 106.67  
 210 88 108.64  
 211 84 103.70  
     
3 Port Gamble Bay 212 87 100.00  
 213 85 98.00  
 214 89 102.30  
     
4 Quilcene Bay 215 87 100.00  
 216 84 96.55  
 217 90 103.00  
     
5 Dabob Bay 218 85 98.00  
 219 87 100.00  
 220 86 98.85  
     
6 Hood Canal (central) 221 90 100.00  
 222 88 101.15  
 223 88 101.15  
     
7 Hood Canal (south) 224 86 95.56  
 225 87 96.67  
 226 95 105.56  
     
8 Port of Shelton 227 96 103.23  
 228 94 101.08  
 229 97 104.30  
     
9 Oakland Bay 230 93 97.89  
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Stratum Location Sample Mean 
Amphipod 

survival 
(%) 

Mean 
Amphipod 

survival as % 
of control 

Statistical 
significance

     
 231 96 101.05  
 232 95 102.15  
     

10 Totten Inlet 233 97 100.00  
 234 94 96.91  
 235 97 100.00  
     

11 Eld Inlet 238 97 100.00  
 239 98 101.03  
 240 95 97.94  
     

12 Budd Inlet 236 94 96.91  
 237 96 101.05  
 241 97 102.11  
     

13 Port of Olympia 242 92 96.84  
 243 96 101.05  
 244 94 98.95  
     

14 Pickering Passage/Squaxin 
Island 

245 77 81.05 * 

  246 96 101.05  
 247 94 98.95  
     

15 Henderson Inlet 248 91 93.81  
 249 97 100.00  
 250 95 97.94  
     

16 Case Inlet 251 97 100.00  
 252 95 97.94  
 253 95 97.94  
     

17 Nisqually Reach 254 89 91.75 * 
 255 94 96.91  
 256 94 95.92  
     

Table 6.  Continued.
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Stratum Location Sample Mean 
Amphipod 

survival 
(%) 

Mean 
Amphipod 

survival as % 
of control 

Statistical 
significance

     
18 Drayton Passage 257 94 96.91  
 258 95 97.94  
 259 99 102.06  
     

19 East Anderson Island/No. 
Cormorant Passage 

260 97 98.98  

  261 97 98.98  
 262 96 97.96  
     

20 Carr Inlet 263 99 101.02  
 264 99 101.02  
 265 97 98.98  
     

21 Hale Passage 266 99 101.02  
 267 98 100.00  
 268 97 98.98  
     

22 Gig Harbor 269 92 104.55  
 270 86 97.73  
 271 88 100.00  
     

23 Colvos Passage 272 84 97.00  
 273 79 91.00  
 274 82 91.11  
     

24 Quartermaster Harbor 275 87 98.86  
 276 93 105.68  
 277 83 94.32  
     

25 East Passage 278 91 103.41  
 279 88 100.00  
 280 86 97.73  
     

26 Outer Commencement Bay 281 87 98.86  
 282 92 100.00  
 283 87 94.57  

Table 6.  Continued.
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Stratum Location Sample Mean 
Amphipod 

survival 
(%) 

Mean 
Amphipod 

survival as % 
of control 

Statistical 
significance

     
 284 93 101.09  
     

27 S. E. Commencement Bay 
(shoreline) 

285 93 101.09  

  286 94 102.17  
 287 88 95.65  
     

28 S. E.  Commencement Bay 288 94 101.08  
 289 96 104.35  
 290 92 100.00  
     

29 N.E. Commencement Bay 291 87 96.67  
 292 84 95.45  
 293 83 92.22  
     

30 Thea Foss Waterway 294 83 90.22 * 
 295 94 101.08  
 296 89 95.70  
     

31 Middle Waterway 297 93 100.00  
 298 88 94.62  
 299 87 93.55  
     

32 Blair Waterway 300 89 101.14  
 301 84 93.33  
 302 85 94.44  
     

33 Hylebos Waterway 303 89 101.14  
 304 91 101.11  
 305 77 86.00  
     

*Mean percent survival significantly less than CLIS controls (p < 0.05) 
**Mean percent survival significantly less than CLIS controls (p < 0.05) and less than 
80% of CLIS controls 

Table 6.  Concluded.
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Table 7.  Results of sea urchin fertilization tests on pore waters from 100 sediment 
samples from southern Puget Sound.  Tests performed with Strongylocentrotus 
purpuratus. 

100 % pore water 50 % pore water  25 % pore water Stratum and 
Location 

Sample 
Mean 

% 
fertili-
zation 

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation 

% of 
control

Stati-
stical 
signifi-
cance

         
1  206 99.2 107  98.2 100.0   98.2 100.9  
Port Ludlow  207 99.0 107  96.6 98.4   97.2 99.9  
  208 76.0 82 + 97.8 99.6   98.0 100.7  
             
2  209 98.0 105  98.8 100.6   99.0 101.7  
Hood Canal 
(north) 

210 98.6 106  98.0 99.8   98.6 101.3  

  211 98.2 106  98.5 100.3   98.2 100.9  
             
3  212 98.4 106  97.6 99.4   98.2 100.9  
Port Gamble 
Bay 

213 99.4 107  98.8 100.6   98.4 101.1  

  214 66.4 71 ** 99.0 100.8   98.0 100.7  
             
4  215 94.0 101  97.0 98.8   96.6 99.3  
Quilcene 
Bay 

 216 97.0 104  98.2 100.0   97.6 100.3  

  217 98.4 106  96.6 98.4   98.2 100.9  
             
5  218 98.2 106  98.4 100.2   97.2 99.9  
Dabob Bay  219 38.0 41 ** 82.6 84.1 +  96.4 99.1  
  220 42.2 45 ** 90.4 92.1 ++  99.0 101.7  
             
6  221 99.0 107  98.0 99.8   97.6 100.3  
Hood Canal 
(central) 

222 97.8 105  99.0 100.8   98.4 101.1  

  223 98.2 106  99.6 101.4   98.2 100.9  
             
7  224 98.2 106  98.6 100.4   95.2 97.8  
Hood Canal 
(south) 

225 98.8 106  98.8 100.6   98.8 101.5  

  226 95.8 103  97.4 99.2   96.8 99.5  

SGEI461

SGEI461

SGEI461
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100 % pore water 50 % pore water  25 % pore water Stratum and 
Location 

Sample 
Mean 

% 
fertili-
zation 

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation 

% of 
control

Stati-
stical 
signifi-
cance

             
8  227 90.6 98  96.0 97.8   96.0 98.7  
Port of 
Shelton 

 228 91.8 99  93.4 95.1 ++  93.4 96.0  

  229 92.2 99  93.4 95.1 ++  88.8 91.3 ++ 
             
9  230 88.8 96  95.4 97.1   87.6 90.0 ++ 
Oakland Bay  231 94.6 102  94.6 96.3   90.8 93.3 ++ 
  232 78.4 84 + 86.8 88.4 ++  89.6 92.1 ++ 
             
10  233 98.6 106  97.2 99.0   97.6 100.3  
Totten Inlet  234 95.2 102  99.0 100.8   95.4 98.0  
  235 65.2 70 ** 90.6 92.3 ++  93.2 95.8  
             
11  238 99.4 107  98.2 100.0   99.0 101.7  
Eld Inlet  239 99.0 107  99.0 100.8   98.4 101.1  
  240 7.2 8 ** 31.2 31.8 **  82.0 84.3 ** 
             
12  236 86.0 93  97.2 99.0   97.6 100.3  
Budd Inlet  237 96.2 104  98.6 100.4   97.6 100.3  
  241 98.4 106  99.2 101.0   97.8 100.5  
             
13  242 0.4 0 ** 0.0 0.0 **  0.2 0.2 ** 
Port of Olympia 243 0.0 0 ** 0.4 0.4 **  3.8 3.9 ** 
  244 93.0 100  96.8 98.6   96.8 99.5  
             
14  245 98.8 106  97.8 99.6   97.8 100.5  
Pickering 
Passage/Squaxi
n Island 

246 99.0 107  98.8 100.6   98.8 101.5  

  247 98.8 106  98.6 100.4   99.2 102.0  
             
             
15  248 96.4 104  93.8 95.5 +  82.8 85.1 ++ 
Henderson Inlet 249 99.4 107  97.8 99.6   92.4 95.0  
  250 97.2 105  88.2 89.8 ++  75.4 77.5 ++ 

Table 7.  Continued.

SGEI461

SGEI461

SGEI461
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100 % pore water 50 % pore water  25 % pore water Stratum and 
Location 

Sample 
Mean 

% 
fertili-
zation 

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation 

% of 
control

Stati-
stical 
signifi-
cance

             
16  251 95.2 102  96.8 98.6   96.6 99.3  
Case Inlet  252 78.2 84 + 96.2 98.0   97.6 100.3  
  253 94.2 101  97.4 99.2   97.2 99.9  
             
17  254 100.0 101  99.2 100.4   98.2 99.6  
Nisqually 
Reach 

255 99.8 101  99.6 100.8   99.2 100.6  

  256 98.8 100  99.4 100.6   99.2 100.6  
             
18  257 99.2 101  98.2 99.4   99.0 100.4  
Drayton 
Passage 

258 98.8 100  99.6 100.8   98.8 100.2  

  259 99.6 101  98.8 100.0   99.2 101.0  
             
19  260 98.8 100  98.4 100.0   98.8 100.0  

261 98.6 100  99.6 100.8   99.0 100.4  East Anderson 
Island/No. 
Cormorant 
Passage 

262 96.6 98  99.0 100.2   99.6 101.0  

             
20  263 99.0 100  98.8 100.0   99.0 100.4  
Carr Inlet  264 99.4 101  98.2 99.4   98.6 100.0  
  265 97.4 99  98.8 100.0   99.8 101.2  
             
21  266 99.2 101  98.2 99.4   99.8 101.2  
Hale 
Passage 

 267 98.8 100  99.4 100.6   97.2 98.6  

  268 98.6 100  98.8 100.0   99.4 100.8  
             
22  269 99.6 101  99.0 100.2   99.2 100.6  
Gig Harbor  270 99.2 101  99.2 100.4   98.4 99.8  
  271 99.4 101  99.4 100.6   99.4 100.8  
             
23  272 99.2 101  99.6 100.8   99.0 100.4  
Colvos 
Passage 

 273 99.0 100  98.0 99.2   99.0 100.4  

Table 7.  Continued.

SGEI461

SGEI461

SGEI461
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100 % pore water 50 % pore water  25 % pore water Stratum and 
Location 

Sample 
Mean 

% 
fertili-
zation 

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation 

% of 
control

Stati-
stical 
signifi-
cance

  274 99.2 101  99.2 100.4   98.8 100.2  
             
24  275 98.4 100  99.4 100.6   99.2 100.6  
Quartermaster 
Harbor 

276 98.2 99  99.2 100.4   99.2 100.6  

  277 99.2 101  98.6 99.8   98.4 99.8  
             
25  278 99.6 101  99.0 100.2   99.6 101.0  
East Passage  279 98.8 100  99.6 100.8   98.8 100.2  
  280 97.4 99  98.8 100.0   98.4 99.8  
             
26  281 98.8 100  98.6 99.8   99.0 100.4  
Outer 
Commencement 
Bay 

282 97.6 99  99.2 100.4   98.4 99.8  

  283 99.2 101  99.4 100.6   99.2 100.6  
  284 99.2 101  99.2 100.4   99.4 100.8  
             
27  285 99.4 101  99.2 100.4   100.0 101.4  
S. E. 
Commencement 
Bay (shoreline) 

286 99.4 101  99.8 101.0   99.6 101.0  

  287 98.8 100  99.8 101.0   99.8 101.2  
             
             
28  288 99.6 101  99.6 100.8   99.0 100.4  
S. E.  
Commencement 
Bay 

289 100.0 101  99.2 100.4   99.4 100.8  

  290 99.6 101  99.4 100.6   99.2 100.6  
             
29  291 99.2 101  99.4 100.6   99.0 100.4  
N.E. 
Commencement 
Bay 

292 98.2 99  99.0 100.2   99.2 100.6  

  293 98.0 99  98.6 99.8   99.4 100.8  
             

Table 7.  Continued.

SGEI461

SGEI461

SGEI461
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100 % pore water 50 % pore water  25 % pore water Stratum and 
Location 

Sample 
Mean 

% 
fertili-
zation 

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation

% of 
control

Stati-
stical 

signifi-
cance 

Mean 
% 

fertili-
zation 

% of 
control

Stati-
stical 
signifi-
cance

30  294 28.4 29 ** 78.2 79.1 **  91.6 92.9 ++ 
Thea Foss 
Waterway 

295 99.2 101  99.6 100.8   99.8 101.2  

  296 99.4 101  99.4 100.6   99.2 100.6  
             
31  297 97.8 99  99.0 100.2   99.5 100.9  
Middle 
Waterway 

298 99.7 101  99.8 101.0   99.2 100.6  

  299 99.0 100  99.6 100.8   99.6 101.0  
             
32  300 99.6 101  99.4 100.6   99.4 100.8  
Blair 
Waterway 

 301 98.8 100  98.8 100.0   99.2 100.6  

  302 99.4 101  98.4 99.6   98.8 100.2  
             
33  303 97.0 98  98.8 100.0   96.8 98.2  
Hylebos 
Waterway 

304 98.4 100  99.2 100.4   97.8 99.2  

  305 99.4 101  98.6 99.8   97.6 99.0  
             
Mean response significantly different from controls (Dunnett's t-test: +=alpha<0.05 or 
++=alpha<0.01) 
Mean response significantly different from controls (Dunnett's t-test) and < 80% of 
controls (*=alpha<0.05 or **=alpha<0.01) 

Table 7.  Concluded.

SGEI461

SGEI461

SGEI461
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Table 8.  Results of Microtox tests (as mean mg/ml and percent of Redfish Bay 
control) and cytochrome P450 HRGS bioassays (as benzo[a]pyrene equivalents) of 
100 sediment samples from southern Puget Sound. 

   MicrotoxTM EC50   

Stratum Location Sample mean 
(mg/ml)

Statistical 
signifi-
cance 

% of 
control

Statistical 
signifi-
cance 

HRGS 
as B[a]P 

eq 
(µg/g) 

Statistical 
signifi-
cance  

        
1 Port Ludlow 206 0.97  9 ** 102.9 +++ 
  207 6.87  63 ** 4.4  
  208 2.00  18 ** 6.0  
         
2 Hood Canal (north) 209 7.40  68 ** 6.7  
  210 8.60  79  6.7  
  211 7.27  67 ** 5.1  
         
3 Port Gamble Bay 212 2.23  20 ** 15.0 ++ 
  213 1.70  16 ** 8.2  
  214 0.99  9 ** 36.8 +++ 
         
4 Quilcene Bay 215 4.43  41  5.3  
  216 19.60  180  3.6  
  217 45.20  415  4.6  
         
5 Dabob Bay 218 29.80  273  3.6  
  219 21.37  196  14.5 ++ 
  220 45.27  415  15.2 ++ 
         
6 Hood Canal (central) 221 9.87  91  12.4 ++ 
  222 111.70  1025  7.4  
  223 11.67  107  8.2  
         
7 Hood Canal (south) 224 5.80  53 ** 8.0  
  225 2.73  25 ** 9.4  
  226 14.63  134  6.5  
         
8 Port of Shelton 227 1.13  10 ** 56.6 +++ 
  228 1.57  14 ** 21.3 ++ 
  229 0.99  9 ** 26.4 ++ 
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   MicrotoxTM EC50   

Stratum Location Sample mean 
(mg/ml)

Statistical 
signifi-
cance 

% of 
control

Statistical 
signifi-
cance 

HRGS 
as B[a]P 

eq 
(µg/g) 

Statistical 
signifi-
cance  

        
         
9 Oakland Bay 230 1.73  16 ** 27.0 ++ 
  231 1.07  10 ** 27.7 ++ 
  232 2.60  24 ** 14.1 ++ 
         

10 Totten Inlet 233 1.57  14 ** 12.7 ++ 
  234 4.17  38 ** 8.0  
  235 3.83  35 ** 8.3  
         

11 Eld Inlet 238 0.77  7 ** 16.1 ++ 
  239 4.20  39 ** 8.4  
  240 4.27  39 ** 15.0 ++ 
         

12 Budd Inlet 236 2.00  18 ** 18.5 ++ 
  237 1.60  15 ** 11.4 ++ 
  241 1.30  12 ** 25.6 ++ 
         

13 Port of Olympia 242 1.01  9 ** 45.7 +++ 
  243 0.31 ^ 3 ** 122.7 +++ 
  244 0.74  7 ** 20.1 ++ 
         

14 245 7.33  67 ** 1.8  
 

Pickering 
Passage/Squaxin 
Island 

246 7.87  72  4.2  

  247 6.63  61 ** 2.7  
         

15 Henderson Inlet 248 3.60  33 ** 9.1  
  249 1.43  13 ** 10.8  
  250 3.73  34 ** 10.4  
         

16 Case Inlet 251 2.33  21 ** 21.9 ++ 
  252 7.40  68 ** 20.0 ++ 
  253 4.87  45 ** 9.0  
         

17 Nisqually Reach 254 9.97  91  2.1  

Table 8.  Continued.
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   MicrotoxTM EC50   

Stratum Location Sample mean 
(mg/ml)

Statistical 
signifi-
cance 

% of 
control

Statistical 
signifi-
cance 

HRGS 
as B[a]P 

eq 
(µg/g) 

Statistical 
signifi-
cance  

        
  255 5.27  48 ** 7.4  
  256 8.13  75  5.5  
         

18 Drayton Passage 257 2.80  26 ** 15.7 ++ 
  258 7.37  68 ** 2.0  
  259 5.63  52 ** 2.3  
         

19 260 6.57  60 ** 12.4 ++ 
 261 5.07  46 ** 9.0  
 

East Anderson 
Island/No. 
Cormorant Passage 262 7.07  65 ** 5.2  

         
20 Carr Inlet 263 14.53  133  3.5  

  264 15.80  145  7.0  
  265 6.23  57 ** 12.8 ++ 
         

21 Hale Passage 266 6.63  61 ** 2.0  
  267 6.80  62 ** 4.1  
  268 6.43  59 ** 1.6  
         

22 Gig Harbor 269 2.80  26 ** 33.3 ++ 
  270 0.95  9 ** 31.3 ++ 
  271 2.00  18 ** 87.0 +++ 
         

23 Colvos Passage 272 29.80  273  3.9  
  273 31.47  289  2.3  
  274 28.40  261  3.7  
         

24 Quartermaster 
Harbor 

275 51.07  469  5.2  

  276 0.71  7 ** 29.2 ++ 
  277 1.30  12 ** 16.4 ++ 
         

25 East Passage 278 18.10  166  78.9 +++ 
  279 3.63  33 ** 24.5 ++ 
  280 175.30  1608  1.5  

Table 8.  Continued.
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   MicrotoxTM EC50   

Stratum Location Sample mean 
(mg/ml)

Statistical 
signifi-
cance 

% of 
control

Statistical 
signifi-
cance 

HRGS 
as B[a]P 

eq 
(µg/g) 

Statistical 
signifi-
cance  

        
         
         

26 281 3.77  35 ** 11.8 ++ 
 

Outer 
Commencement Bay 282 4.30  39 ** 27.8 ++ 

  283 11.57  106  18.8 ++ 
  284 6.47  59 ** 7.0  
         

27 285 9.07  83  19.8 ++ 
 

S. E. Commencement 
Bay (shoreline) 286 5.77  53 ** 26.4 ++ 

  287 4.67  43 ** 121.7 +++ 
         

28 288 9.20  84  12.8 ++ 
 

S. E.  
Commencement Bay 289 11.00  101  18.2 ++ 

  290 7.87  72  18.8 ++ 
         

29 291 5.47  50 ** 22.0 ++ 
 

N.E. Commencement 
Bay 292 4.03  37 ** 28.4 ++ 

  293 0.43 ^ 4 ** 109.0 +++ 
         

30 Thea Foss Waterway 294 0.32 ^ 3 ** 1994.9 +++ 
  295 1.37  13 ** 529.1 +++ 
  296 1.14  10 ** 355.7 +++ 
         

31 Middle Waterway 297 3.03  28 ** 44.2 +++ 
  298 0.89  8 ** 73.3 +++ 
  299 2.00  18 ** 119.7 +++ 
         

32 Blair Waterway 300 3.27  30 ** 36.7 ++ 
  301 2.60  24 ** 33.3 ++ 
  302 4.33  40 ** 19.9 ++ 
         

33 Hylebos Waterway 303 0.88  8 ** 176.2 +++ 
  304 1.23  11 ** 104.8 +++ 
  305 0.82  7 ** 73.3 +++ 
         

Table 8.  Continued.



Page 129 

^ = mean EC50 <0.51 mg/ml determined as the 80% lower prediction limit (LPL) with 
the lowest (i.e., most toxic) samples removed, but >0.06 mg/ml determined as the 90% 
lower prediction limit (LPL) earlier in this report 
 
* indicates significantly different from controls (p < 0.05) 
** indicates significantly different from controls (p < 0.05) and <80% of controls 
 
++ = value >11.1 benzo[a]pyrene equivalents (µg/g sediment) determined as the 80% 
upper prediction limit (UPL) 
+++ = value >37.1 benzo[a]pyrene equivalents (µg/g sediment) determined as the 90% 
upper prediction limit (UPL) 
 

Table 8.  Concluded.
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Table 9.  Estimates of the spatial extent of significant responses in four independent 
tests performed on 100 sediment samples from southern Puget Sound.  Total study 
area 857.68 km2. 

Toxicity test  “Toxic” area (km2) Percent of total area 
   
Amphipod survival    
• Mean survival < 80% of controls 0 0 

   
Urchin fertilization  
  (mean fertilization < 80% of controls) 

  

• 100% pore water 48.9 5.7 
• 50% pore water 4.7 0.5 
• 25% pore water 2.2 0.3 

   
Microbial bioluminescence   
• < 80% of controls 518.6 60.5 
• < 0.51 mg/mlA 1.5 0.2 
• <0.06 mg/mlB 0.0 0.0 

   
Cytochrome P450 HRGS   
• > 11.1 µg/gC 329.2 38.4 
• > 37.1 µg/gD 43.1 5.0 

   
A Critical value: mean EC50 < 0.51 mg/ml (80% lower prediction limit (LPL) with 

lowest, i.e. most toxic, samples removed) 
B Critical value: mean EC50 <0.06 mg/ml (90% LPL of the entire data set - NOAA 

surveys and northern Puget Sound data, n=1013). 
C Critical value: > 11.1 µg/g benzo[a]pyrene equivalents/g sediment determined as the 

80% upper prediction limit (UPL) following removal of 10% of the most toxic 
(highest) values form a database composed of NOAA data from many surveys 
nationwide (n=530). 

D Critical value: >37.1 µg/g benzo[a]pyrene equivalents/g sediment determined as the 
90% UPL of the entire NOAA data set (n=530). 
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Table 10.  Spearman-rank correlation coefficients (rho, corrected for ties) for 
combinations of different toxicity tests performed with 100 sediment samples from 
southern Puget Sound. 

 Amphipod 
survival 

Signifi-
cance 

(p) 

Microbial 
bioluminescence

Signifi-
cance 

(p) 

Cytochrome 
P450 HRGS 

assay 

Signifi-
cance (p)

       
Amphipod survival A       
Microbial 
bioluminescence A 

0.025 ns     

Cytochrome P450 
HRGS 

0.075 ns -0.684 ****   

Urchin fertilization A  0.147 ns 0.166 ns -0.314 ** 
  

ns = not significant (p>0.05) 
** p<0.01 
**** p<0.0001 
A analyses performed with control-normalized data 
 
 

Table 11.  Sediment types characterizing the 100 samples collected in 1999 from 
southern Puget Sound. 

Sediment type % Sand % Silt-clay % Gravel (range of 
data for each station 

type) 

No. of stations 
with this 

sediment type 
     
Sand > 80 < 20 24.6 24 
Silty sand 60-80 20 - <40 7.5 12 
Mixed 20 -< 60 40 – 80 32.3 40 
Silt clay < 20 > 80 6.3 24 
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Table 12.  Samples from the 1999 southern Puget Sound survey in which individual 
numerical guidelines or Washington State criteria were exceeded. 

Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 
         

1, 206, Port 
Ludlow 

9 0.16       

1, 207, Port 
Ludlow 

5 0.09   1 LPAHs: 
Naphthalene 

  

1, 208, Port 
Ludlow 

5 0.10       

2, 209, Hood 
Canal 
(north) 

0 0.09       

2, 210, Hood 
Canal 
(north) 

0 0.07       

2, 211, Hood 
Canal 
(north) 

1 0.07       

3, 212, Port 
Gamble Bay 

6 0.11 1 Metals: 
Silver 

    

3, 213, Port 
Gamble Bay 

3 0.07       

3, 214, Port 
Gamble Bay 

18 0.50 4 LPAHs: Ace-
naphthylene, 
Naphthalene, 
Phenanthrene, 
Total LPAH 

    

4, 215, 
Quilcene 
Bay 

3 0.18       

4, 216, 
Quilcene 
Bay 

2 0.09       

4, 217, 
Quilcene 
Bay 

2 0.09       

5, 218, 
Dabob Bay 

2 0.09       

5, 219, 
Dabob Bay 

3 0.10       

5, 220, 
Dabob Bay 

2 0.10       

6, 221, Hood 
Canal 
(central) 

3 0.18       
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

6, 222, Hood 
Canal 
(central) 

1 0.09       

6, 223, Hood 
Canal 
(central) 

3 0.11       

7, 224, Hood 
Canal 
(south) 

4 0.14       

7, 225, Hood 
Canal 
(south) 

4 0.13       

7, 226, Hood 
Canal 
(south) 

3 0.12       

8, 227, Port 
of Shelton 

16 0.22       

8, 228, Port 
of Shelton 

5 0.15       

8, 229, Port 
of Shelton 

7 0.15       

9, 230, 
Oakland Bay 

8 0.18       

9, 231, 
Oakland Bay 

3 0.14       

9, 232, 
Oakland Bay 

5 0.12       

10, 233, 
Totten Inlet 

3 0.09       

10, 234, 
Totten Inlet 

3 0.10       

10, 235, 
Totten Inlet 

4 0.19 1 Metals: 
Mercury 

1 Metals: 
Mercury 

1 Metals: 
Mercury 

11, 238, Eld 
Inlet 

3 0.12       

11, 239, Eld 
Inlet 

3 0.10       

11, 240, Eld 
Inlet 

4 0.11       

12, 236, 
Budd Inlet 

3 0.12       

12, 237, 
Budd Inlet 

3 0.11   2 Other: 
Benzoic 
Acid, 
Benzyl 
Alcohol 

2 Other: 
Benzoic 
Acid, 
Benzyl 
Alcohol 

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

12, 241, 
Budd Inlet 

3 0.10       

13, 242, Port 
of Olympia 

13 0.23       

13, 243, Port 
of Olympia 

23 0.43   2 Other: 
Benzoic 
Acid, Bis(2-
Ethylhexyl) 
Phthalate 

1 Other: 
Benzoic 
Acid 

13, 244, Port 
of Olympia 

4 0.13   1 Other: 
Phenol 

1 Other: 
Phenol 

14, 245, 
Pickering 
Passage/ 
Squaxin 
Island 

1 0.07   1 Other: 
Benzyl 
Alcohol 

  

14, 246, 
Pickering 
Passage/ 
Squaxin 
Island 

0 0.07       

14, 247, 
Pickering 
Passage/ 
Squaxin 
Island 

1 0.05   1 Other: 
Benzyl 
Alcohol 

1 Other: 
Benzyl 
Alcohol 

15, 248, 
Henderson 
Inlet 

3 0.10       

15, 249, 
Henderson 
Inlet 

3 0.10       

15, 250, 
Henderson 
Inlet 

2 0.10   2 Other: 
Benzoic 
Acid, 
Phenol 

2 Other: 
Benzoic 
Acid, 
Phenol 

16, 251, 
Case Inlet 

1 0.09       

16, 252, 
Case Inlet 

2 0.10       

16, 253, 
Case Inlet 

2 0.10       

17, 254, 
Nisqually 
Reach 

0 0.05       

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

17, 255, 
Nisqually 
Reach 

0 0.06       

17, 256, 
Nisqually 
Reach 

0 0.06       

18, 257, 
Drayton 
Passage 

1 0.08       

18, 258, 
Drayton 
Passage 

0 0.05       

18, 259, 
Drayton 
Passage 

0 0.05       

19, 260, East 
Anderson 
Island/No. 
Cormorant 
Passage 

1 0.10   1 Other: 
Benzoic 
Acid 

1 Other: 
Benzoic 
Acid 

19, 261, East 
Anderson 
Island/No. 
Cormorant 
Passage 

1 0.09       

19, 262, East 
Anderson 
Island/No. 
Cormorant 
Passage 

0 0.09       

20, 263, Carr 
Inlet 

0 0.08       

20, 264, Carr 
Inlet 

4 0.20       

20, 265, Carr 
Inlet 

3 0.13       

21, 266, 
Hale Passage 

0 0.04   1 Other: 
Benzoic 
Acid 

1 Other: 
Benzoic 
Acid 

21, 267, 
Hale Passage 

0 0.05       

21, 268, 
Hale Passage 

0 0.07       

22, 269, Gig 
Harbor 

0 0.08       

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

22, 270, Gig 
Harbor 

1 0.14       

22, 271, Gig 
Harbor 

19 0.33       

23, 272, 
Colvos 
Passage 

0 0.08       

23, 273, 
Colvos 
Passage 

1 0.08       

23, 274, 
Colvos 
Passage 

0 0.07       

24, 275, 
Quartermast
er Harbor 

0 0.05       

24, 276, 
Quartermast
er Harbor 

5 0.15       

24, 277, 
Quartermast
er Harbor 

4 0.11       

25, 278, East 
Passage 

10 0.20       

25, 279, East 
Passage 

5 0.14       

25, 280, East 
Passage 

1 0.08       

26, 281, 
Outer 
Commen-
cement Bay 

5 0.12       

26, 282, 
Outer 
Commen-
cement Bay 

7 0.16       

26, 283, 
Outer 
Commen-
cement Bay 

4 0.14       

26, 284, 
Outer 
Commen-
cement Bay 

 0.16       

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

27, 285, S. 
E. Commen-
cement Bay 
(shoreline) 

3 0.12       

27, 286, S. 
E. Commen-
cement Bay 
(shoreline) 

8 0.14       

27, 287, S. 
E. Commen-
cement Bay 
(shoreline) 

20 0.53 2 LPAHs: 
Phenanthrene, 
Total LPAH 

    

28, 288, S. 
E.  
Commen-
cement Bay 

7 0.18       

28, 289, S. 
E.  
Commen-
cement Bay 

8 0.14       

28, 290, S. 
E.  
Commen-
cement Bay 

8 0.12       

29, 291, 
N.E. 
Commen-
cement Bay 

6 0.11       

29, 292, 
N.E. 
Commen-
cement Bay 

6 0.14       

29, 293, 
N.E. 
Commen-
cement Bay 

15 0.25       

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

30, 294, 
Thea Foss 
Waterway 

27 4.25 18 Metals: 
Lead;  
LPAHs: 2-
Methyl-
naphthalene, 
Ace-
naphthene, 
Ace-
naphthylene, 
Anthracene, 
Fluorene, 
Phenanthrene, 
Total LPAHs; 
HPAHs: 
Benzo(a) 
anthracene, 
Benzo(a) 
pyrene, 
Chrysene, 
Dibenzo(a,h) 
anthracene, 
Fluoranthene, 
Naphthalene, 
Pyrene, Total 
HPAHs, 
Total PAHs; 
Other: Total 
PCBs 

11 Metals: 
Mercury; 
LPAHs: 
Ace-
naphthene, 
Fluorene, 
Phen-
anthrene; 
HPAHs: 
Benzo(g,h,i)
perylene, 
Fluor-
anthene, 
Indeno(1,2,3
-c,d)pyrene; 
Other: 
Dibenzo-
furan, 2,4-
Dimethyl-
phenol, 
Bis(2Ethylh
exyl) 
Phthalate, 
Total 
Aroclors 

2 Metals: 
Mercury; 
Other: 2,4-
Dimethyl-
phenol 

30, 295, 
Thea Foss 
Waterway 

21 0.52 1 LPAHs: 
Total LPAHs 

1 Other: 
Butylbenzyl
phthalate 

  

30, 296, 
Thea Foss 
Waterway 

21 0.55 2 LPAHs: 
Total LPAHs; 
HPAHs: 
Pyrene 

2 HPAHs: 
Benzo(g,h,i) 
perylene, 
Indeno(1,2,3
-c,d)pyrene 

  

31, 297, 
Middle 
Waterway 

19 0.41       

31, 298, 
Middle 
Waterway 

18 0.29       

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

31, 299, 
Middle 
Waterway 

22 1.11 12 Metals: 
Copper, 
Mercury; 
LPAHs: Ace-
naphthene, 
Anthracene, 
Fluorene, 
Phenanthrene, 
Total LPAHs; 
HPAHs: 
Benzo(a) 
anthracene, 
Benzo(a) 
pyrene, 
Dibenzo(a,h) 
anthracene, 
Pyrene, Total 
HPAHs 

16 Metals: 
Arsenic, 
Cooper, 
Mercury; 
LPAHs: 
Ace-
naphthene, 
Fluorene, 
Phen-
anthrene, 
Total 
LPAHs; 
HPAHs: 
Benzo(a) 
anthracene, 
Benzo(a) 
pyrene, 
Benzo(g,h,i) 
perylene, 
Chrysene, 
Dibenzo 
(a,h) 
anthracene, 
Fluoranthen
e, 
Indeno(1,2,3
-c,d)pyrene, 
Total 
HPAHs; 
Other: 
Dibenzo-
furan 

4 Metals: 
Cooper, 
Mercury; 
LPAHs: 
Ace-
naphthene; 
HPAHs: 
Dibenzo 
(a,h) 
anthracene 

32, 300, 
Blair 
Waterway 

4 0.13       

32, 301, 
Blair 
Waterway 

3 0.13       

32, 302, 
Blair 
Waterway 

2 0.16       

33, 303, 
Hylebos 
Waterway 

24 2.05 1 Other: Total 
PCBs 

2 Other: 
Hexachloro-
benzene, 
Total 
Aroclors 

  

Table 12.  Continued.
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Stratum, 
Sample, 
Location 

Number 
of ERLs 

exce-
eded 

Mean 
ERM 
Quot-
ient 

Number 
of 

ERMs 
exce-
eded 

Chemicals 
exceeding 

ERMs 

Number 
of SQSs 

exce-
eded 

Chemicals 
exceeding 

SQSs 

Number 
of CSLs 

exce-
eded 

Chemicals 
exceeding 

CSLs 

33, 304, 
Hylebos 
Waterway 

12 0.58   3 Other: 
Hexachlorob
enzene, 
Phenol, 
Total 
Aroclors 

  

33, 305, 
Hylebos 
Waterway 

19 1.08   1 Other: 
Hexachlorob
enzene 
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Table 14.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of trace 
metals, chlorinated organic hydrocarbons, and total PAHs, normalized to their 
respective ERM, SQS, CSL values for all 1999 southern Puget Sound sites (n=100). 

Chemical Amph-
ipod 

survival

(p) Urchin 
fertiliz-
ation 

(p) Microbial 
biolumin-
escence 

(p) Cyto-
chrome 
P450 

HRGS 

(p) 

ERM values   
mean ERM quotients for 9 trace metals 0.002 ns -0.133 ns -0.405 *** 0.459 **** 
mean ERM quotients for 13 polynuclear 

aromatic hydrocarbons 
0.068 ns -0.382 ** -0.537 **** 0.816 **** 

mean ERM quotients for 25 substances 0.058 ns -0.300 * -0.536 **** 0.805 **** 

SQS values   
mean SQS quotients for 8 trace metals -0.013 ns -0.178 ns -0.520 **** 0.633 **** 
mean SQS quotients for 6 low 

molecular weight polynuclear 
aromatic hydrocarbons 

0.055 ns -0.314 * -0.315 * 0.585 **** 

mean SQS quotients for 9 high 
molecular weight polynuclear 
aromatic hydrocarbons 

-0.038 ns -0.362 ** -0.329 ** 0.596 **** 

mean SQS quotients for 15 polynuclear 
aromatic hydrocarbons 

0.011 ns -0.338 ** -0.341 ** 0.609 **** 

CSL values   
mean CSL quotients for 8 trace metals -0.006 ns -0.173 ns -0.514 **** 0.627 **** 
mean CSL quotients for 6 low 

molecular weight polynuclear 
aromatic hydrocarbons 

0.064 ns -0.305 * -0.308 * 0.582 **** 

mean CSL quotients for 9 high 
molecular weight polynuclear 
aromatic hydrocarbons 

-0.038 ns -0.354 ** -0.320 * 0.592 **** 

mean CSL quotients for 15 polynuclear 
aromatic hydrocarbons 

0.014 ns -0.332 ** -0.343 ** 0.609 **** 

ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 
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Table 15.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of partial 
digestion metals in sediments for all 1999 southern Puget Sound sites (n=100). 

Chemical Amphipod 
survival 

(p) Urchin 
fertilization 

(p) Microbial 
bioluminescence

(p) Cytochrome 
P450 HRGS

(p) 

    
Aluminum 0.139 ns -0.034 ns -0.222 ns 0.276 ns 
Antimony -0.224 ns 0.132 ns -0.319 ns 0.623 ns 
Arsenic -0.138 ns -0.098 ns -0.418 ** 0.562 **** 
Barium 0.081 ns -0.131 ns -0.231 ns 0.590 **** 
Beryllium 0.138 ns 0 ns -0.165 ns 0.179 ns 
Cadmium -0.128 ns -0.05 ns -0.394 ns 0.124 ns 
Calcium 0.036 ns 0.046 ns -0.283 ns 0.264 ns 
Chromium 0.216 ns -0.001 ns -0.201 ns 0.133 ns 
Cobalt 0.182 ns -0.013 ns 0.049 ns 0.026 ns 
Copper 0.003 ns -0.157 ns -0.418 ** 0.591 **** 
Iron 0.207 ns -0.013 ns -0.170 ns 0.249 ns 
Lead -0.102 ns -0.309 ns -0.485 **** 0.724 **** 
Magnesium 0.216 ns 0.034 ns -0.098 ns 0.122 ns 
Manganese 0.105 ns 0.015 ns 0.368 * -0.378 * 
Mercury 0.021 ns -0.291 ns -0.499 **** 0.714 **** 
Nickel 0.241 ns 0.050 ns 0.022 ns -0.084 ns 
Potassium 0.054 ns -0.015 ns -0.218 ns 0.331 ns 
Selenium 0.020 ns -0.059 ns -0.112 ns -0.040 ns 
Silver -0.304 ns -0.088 ns -0.469 ** 0.408 * 
Sodium 0.101 ns -0.044 ns -0.245 ns 0.351 ns 
Thallium -0.125 ns -0.006 ns -0.165 ns 0.002 ns 
Vanadium 0.075 ns -0.031 ns -0.076 ns 0.282 ns 
Zinc 0.025 ns -0.129 ns -0.387 * 0.510 **** 

    
ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 
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Table 16.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of total 
digestion metals in sediments for all 1999 southern Puget Sound sites (n=100). 

Chemical Amphipod 
survival 

(p) Urchin 
fertilization 

(p) Microbial 
bioluminescence

(p) Cytochrome 
P450 HRGS

(p) 

         
Aluminum  0.031 ns -0.101 ns -0.294 ns 0.562 **** 
Antimony  -0.005 ns -0.132 ns -0.113 ns 0.488 * 
Arsenic  -0.150 ns -0.112 ns -0.437 *** 0.553 **** 
Barium  0.028 ns -0.114 ns -0.242 ns 0.343 ns 
Beryllium  0.210 ns 0.408 ns 0.502 * -0.449 ns 
Cadmium  -0.002 ns -0.061 ns -0.646 **** 0.404 ** 
Calcium  -0.041 ns -0.031 ns -0.346 ns 0.499 **** 
Chromium  0.193 ns 0.094 ns -0.106 ns 0.065 ns 
Cobalt  0.023 ns 0.030 ns 0.061 ns 0.100 ns 
Copper  -0.060 ns -0.103 ns -0.360 ns 0.501 *** 
Iron  0.124 ns -0.007 ns -0.165 ns 0.310 ns 
Lead  -0.124 ns -0.295 ns -0.437 *** 0.698 **** 
Magnesium  0.231 ns -0.020 ns -0.142 ns 0.323 ns 
Manganese  -0.003 ns 0.024 ns 0.390 * -0.302 ns 
Nickel  0.118 ns 0.085 ns 0.009 ns -0.165 ns 
Potassium  -0.064 ns -0.035 ns 0.065 ns 0.348 ns 
Selenium  -0.042 ns 0.021 ns -0.015 ns -0.301 ns 
Silver  0.042 ns -0.046 ns -0.338 ns 0.328 ns 
Sodium  0.040 ns 0.002 ns -0.203 ns 0.305 ns 
Thallium  -0.048 ns 0.012 ns -0.379 ns 0.295 ns 
Vanadium  0.136 ns 0.066 ns -0.037 ns 0.232 ns 
Zinc  0.005 ns -0.157 ns -0.387 * 0.574 **** 
Silicon  0.076 ns 0.170 ns 0.275 ns -0.403 ** 
Tin  0.031 ns -0.254 ns -0.558 **** 0.782 **** 

      
ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 
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Table 17.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of Low 
Molecular Weight Polynuclear Aromatic Hydrocarbons (LPAH) in sediments for all 
1999 southern Puget Sound sites (n=100). 

Chemical Amphipod 
survival 

(p) Urchin 
fertilization 

(p) Microbial 
bioluminescence 

(p) Cytochrome 
P450 HRGS

(p) 

   
1,6,7-

Trimethylnaphthalene 
0.045 ns -0.313 ns -0.358 * 0.778 **** 

1-Methylnaphthalene 0.102 ns -0.288 ns -0.402 ** 0.807 **** 
1-Methylphenanthrene 0.073 ns -0.319 ns -0.401 ** 0.837 **** 
2,6-Dimethylnaphthalene 0.064 ns -0.204 ns -0.410 ** 0.743 **** 
2-Methylnaphthalene 0.121 ns -0.346 ns -0.420 ** 0.823 **** 
2-Methylphenanthrene 0.089 ns -0.329 ns -0.441 *** 0.872 **** 
Acenaphthene 0.012 ns -0.364 ns -0.549 **** 0.796 **** 
Acenaphthylene 0.137 ns -0.269 ns -0.601 **** 0.820 **** 
Anthracene 0.050 ns -0.322 ns -0.596 **** 0.880 **** 
Biphenyl 0.048 ns -0.400 * -0.428 ** 0.726 **** 
Dibenzothiophene 0.040 ns -0.313 ns -0.490 **** 0.893 **** 
Fluorene 0.114 ns -0.333 ns -0.524 **** 0.870 **** 
Naphthalene 0.119 ns -0.280 ns -0.565 **** 0.763 **** 
Phenanthrene 0.110 ns -0.307 ns -0.561 **** 0.880 **** 
Retene 0.052 ns -0.367 * -0.443 *** 0.794 **** 

   
Sum of 6 LPAH^ 0.070 ns -0.315 ns -0.347 ns 0.614 **** 
Sum of 7 LPAH^^ 0.117 ns -0.299 ns -0.562 **** 0.863 **** 
Total LPAH 0.084 ns -0.332 ns -0.530 **** 0.860 **** 

   
^6 LPAH = defined by WA Ch. 173-204 RCW; Acenaphthene, Acenaphthylene, 
Anthracene, Fluorene, Naphthalene, Phenanthrene, carbon normalized. 
^^7LPAH = defined by Long et. Al., 1995; Acenaphthene, Acenaphthylene, Anthracene, 
Fluorene, 2-Methylnaphthalene, Naphthalene, Phenanthrene 
ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 
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Table 18.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of High 
Molecular Weight Polynuclear Aromatic Hydrocarbons (HPAH) in sediments for 
all 1999 southern Puget Sound sites (n=100). 

Chemical Amphipod 
survival 

(p) Urchin 
fertilizatio

n 

(p) Microbial 
bioluminescence 

(p) Cytochrome 
P450 HRGS

(p) 

   
Benzo(a)anthracene 0.051 ns -0.329 ns -0.581 **** 0.920 ****
Benzo(a)pyrene 0.067 ns -0.315 ns -0.596 **** 0.925 ****
Benzo(b)fluoranthene 0.059 ns -0.252 ns -0.545 **** 0.841 ****
Benzo(e)pyrene 0.044 ns -0.332 ns -0.611 **** 0.933 ****
Benzo(g,h,i)perylene 0.086 ns -0.372 * -0.600 **** 0.914 ****
Benzo(k)fluoranthene 0.022 ns -0.363 * -0.481 *** 0.835 ****
Chrysene 0.044 ns -0.335 ns -0.592 **** 0.923 ****
Dibenzo(a,h)anthracene 0.128 ns -0.357 ns -0.525 **** 0.886 ****
Fluoranthene 0.052 ns -0.312 ns -0.660 **** 0.906 ****
Indeno(1,2,3-

c,d)pyrene 
0.031 ns -0.325 ns -0.540 **** 0.906 ****

Perylene 0.077 ns -0.290 ns -0.460 *** 0.841 ****
Pyrene 0.044 ns -0.315 ns -0.672 **** 0.912 ****

   
sum of 6 HPAH^ 0.047 ns -0.325 ns -0.643 **** 0.925 ****
sum of 9 HPAH^^ -0.029 ns -0.371 * -0.384 * 0.637 ****
Total HPAH 0.050 ns -0.332 ns -0.616 **** 0.927 ****

   
sum of 13 PAH^^^ 0.076 ns -0.306 ns -0.611 **** 0.899 ****
sum of 15 PAH^^^^ 0.003 ns -0.351 ns -0.381 * 0.639 ****
Total all PAH 0.062 ns -0.327 ns -0.572 **** 0.912 ****

   
^6HPAH = defined by Long et. al., 1995; Benzo(a)anthracene, Benzo(a)pyrene, 
Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Pyrene  
^^9HPAH = defined by WA Ch. 173-204 RCW;  Benzo(a)anthracene, Benzo(a)pyrene, 
Indeno(1,2,3,-c,d)pyrene, Benzo(g,h,I)perylene, Chrysene, Dibenzo(a,h)anthracene, 
Fluoranthene, Pyrene, Total Benzofluoranthenes, carbon normalized 
^^^13PAH = 7LPAH and 6HPAH 
^^^^15PAH= 6LPAH and A11HPAH 
ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 
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Table 19.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of 
organotins and organic chemicals in sediments for all 1999 southern Puget Sound 
sites (n=100). 

Chemical Amphipod 
survival 

(p) Urchin 
fertilization

(p) Microbial 
bioluminescence 

(p) Cytochrome 
P450 HRGS

(p) 

   
Organotins   

Dibutyltin Dichloride -0.117 ns -0.329 ns -0.182 ns 0.592 ns 
Monobutyltin 

Trichloride 
-0.012 ns -0.321 ns -0.047 ns 0.392 ns 

Tributyltin Chloride -0.097 ns -0.144 ns -0.155 ns 0.712 * 
   

Phenols   
2-Methylphenol 0.235 ns 0.121 ns -0.453 ns 0.218 ns 
4-Methylphenol 0.159 ns -0.243 ns -0.452 ns 0.553 * 
Pentachlorophenol 0.770 ns -0.745 ns -0.345 ns -0.145 ns 
Phenol 0.459 ns -0.250 ns -0.650 ns 0.273 ns 

   
Miscellaneous   

1,4-Dichlorobenzene 0.101 ns -0.580 ns -0.425 ns 0.668 ns 
9(H)Carbazole 0.042 ns -0.349 ns -0.555 **** 0.885 ****
Benzoic Acid 0.050 ns -0.402 ns -0.264 ns 0.134 ns 
Benzyl Alcohol -0.268 ns 0.477 ns -0.383 ns -0.317 ns 
Bis(2-Ethylhexyl) 
Phthalate 

-0.179 ns -0.607 ns -0.929 ns 0.857 ns 

Butylbenzylphthalate 0.100 ns 0.500 ns -0.900 ns 0.900 ns 
Dibenzofuran 0.086 ns -0.333 ns -0.599 **** 0.863 ****
Diethylphthalate 0.087 ns -0.543 ns -0.771 ns 0.928 ns 
Dimethylphthalate -0.293 ns -0.530 ns 0.092 ns 0.812 ns 
Hexachlorobenzene -0.328 ns -0.022 ns -0.376 ns 0.275 ns 
Hexachlorobutadiene 0.359 ns 0.667 ns 0.051 ns 0.154 ns 

   
ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 
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Table 20.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) for results of four toxicity tests and concentrations of DDT 
and PCB chemicals in sediments for all 1999 southern Puget Sound sites (n=100). 

Chemical Amphipod 
survival 

(p) Urchin 
fertilization

(p) Microbial 
bioluminescence 

(p) Cytochrome 
P450 HRGS

(p) 

   
4,4'-DDD -0.114 ns -0.494 ns -0.409 ns 0.691 ns 
4,4'-DDE -0.273 ns -0.350 ns -0.709 ns 0.770 ns 
4,4'-DDT 0.319 ns -0.431 ns -0.058 ns 0.667 ns 
Total DDT -0.291 ns -0.414 ns -0.412 ns 0.571 ns 

   
PCB Aroclor 1248 -0.357 ns -0.095 ns -0.643 ns 0.857 ns 
PCB Aroclor 1254 -0.036 ns -0.047 ns -0.363 ns 0.733 *** 
PCB Aroclor 1260 -0.040 ns 0.046 ns -0.594 ns 0.686 ns 
PCB Aroclor 1268 0.400 ns -0.600 ns -0.400 ns 0.600 ns 
Total PCB aroclors  -0.249 ns 0.159 ns -0.215 ns 0.711 *** 

   
PCB Congener 18 0.500 ns -0.500 ns -0.500 ns -0.500 ns 
PCB Congener 28 -0.024 ns 0.214 ns -0.515 ns 0.738 ns 
PCB Congener 44 0.500 ns -0.683 ns -0.533 ns 0.550 ns 
PCB Congener 52 0.097 ns -0.200 ns -0.505 ns 0.609 ns 
PCB Congener 66 0.109 ns -0.441 ns -0.335 ns 0.433 ns 
PCB Congener 101 0.068 ns -0.098 ns -0.317 ns 0.720 *** 
PCB Congener 105 0.335 ns -0.192 ns -0.393 ns 0.653 ns 
PCB Congener 118 -0.187 ns -0.124 ns -0.393 ns 0.698 * 
PCB Congener 128 0.285 ns -0.097 ns -0.236 ns 0.863 ns 
PCB Congener 138 -0.086 ns -0.072 ns -0.419 ns 0.645 ** 
PCB Congener 153 -0.102 ns -0.160 ns -0.449 ns 0.607 ** 
PCB Congener 170 0.245 ns -0.014 ns -0.056 ns 0.655 ns 
PCB Congener 180 -0.063 ns 0.144 ns -0.464 ns 0.799 ** 
PCB Congener 187 0.118 ns 0.062 ns -0.428 ns 0.791 * 
PCB Congener 195 -0.200 ns -0.949 ns -0.400 ns 0.400 ns 
PCB Congener 206 -0.123 ns -0.018 ns -0.228 ns 0.330 ns 
Total PCB 

congeners 
-0.107 ns -0.103 ns -0.516 ns 0.712 ****

   
Total HCH -0.135 ns -0.176 ns -0.528 * 0.734 ****

   
ns = p > 0.05 
* = p ≤ 0.05 
** = p ≤ 0.01 
*** = p ≤ 0.001 
**** = p ≤ 0.0001 



St
ra

tu
m

 
Sa

m
pl

e
To

ta
l 

A
bu

nd
an

ce
 

A
nn

el
id

a

 A
nn

el
id

a 
 

%
 o

f t
ot

al
 

ab
un

da
nc

e
A

rth
ro

po
da

A
rth

ro
po

da
 

%
 o

f t
ot

al
 

ab
un

da
nc

e
M

ol
lu

sc
a

M
ol

lu
sc

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

Ec
hi

no
-

de
rm

at
a

Ec
hi

no
de

rm
at

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

M
is

c.
 T

ax
a

M
is

c.
 T

ax
a 

%
 o

f t
ot

al
 

ab
un

da
nc

e

1
20

6
68

8
59

5
86

.4
8

1
0.

15
90

13
.0

8
0

0.
00

2
0.

29
20

7
95

3
68

7
72

.0
9

11
5

12
.0

7
14

8
15

.5
3

0
0.

00
3

0.
31

20
8

15
74

64
5

40
.9

8
73

1
46

.4
4

19
8

12
.5

8
0

0.
00

0
0.

00

2
20

9
40

8
87

21
.3

2
22

1
54

.1
7

87
21

.3
2

4
0.

98
9

2.
21

21
0

51
7

12
7

24
.5

6
13

4
25

.9
2

21
0

40
.6

2
10

1.
93

36
6.

96
21

1
58

7
19

8
33

.7
3

25
7

43
.7

8
10

7
18

.2
3

2
0.

34
23

3.
92

3
21

2
19

66
17

64
89

.7
3

11
9

6.
05

69
3.

51
7

0.
36

7
0.

36
21

3
34

76
32

02
92

.1
2

14
3

4.
11

10
7

3.
08

10
0.

29
14

0.
40

21
4

93
9

78
1

83
.1

7
16

1.
70

13
8

14
.7

0
4

0.
43

0
0.

00

4
21

5
75

3
40

5
53

.7
8

64
8.

50
26

9
35

.7
2

7
0.

93
8

1.
06

21
6

74
4

34
4

46
.2

4
56

7.
53

32
5

43
.6

8
6

0.
81

13
1.

75
21

7
89

2
36

1
40

.4
7

41
4.

60
42

7
47

.8
7

2
0.

22
61

6.
84

5
21

8
28

1
14

7
52

.3
1

4
1.

42
12

7
45

.2
0

0
0.

00
3

1.
07

21
9

47
25

53
.1

9
10

21
.2

8
11

23
.4

0
1

2.
13

0
0.

00
22

0
26

12
46

.1
5

5
19

.2
3

7
26

.9
2

1
3.

85
1

3.
85

6
22

1
10

0
64

64
.0

0
8

8.
00

24
24

.0
0

0
0.

00
4

4.
00

22
2

21
9

82
37

.4
4

10
4

47
.4

9
30

13
.7

0
0

0.
00

3
1.

37
22

3
69

45
65

.2
2

6
8.

70
5

7.
25

6
8.

70
7

10
.1

4

T
ab

le
 2

1.
  T

ot
al

 a
bu

nd
an

ce
, m

aj
or

 ta
xa

 a
bu

nd
an

ce
, a

nd
 m

aj
or

 ta
xa

 p
er

ce
nt

 a
bu

nd
an

ce
 fo

r 
th

e 
19

99
 so

ut
he

rn
 P

ug
et

 S
ou

nd
 

sa
m

pl
in

g 
st

at
io

ns
.

Po
rt 

Lu
dl

ow

H
oo

d 
C

an
al

 (n
or

th
)

Po
rt 

G
am

bl
e 

B
ay

Q
ui

lc
en

e 
B

ay

D
ab

ob
 B

ay

H
oo

d 
C

an
al

 (c
en

tra
l)

Page 155



St
ra

tu
m

 
Sa

m
pl

e
To

ta
l 

A
bu

nd
an

ce
A

nn
el

id
a

A
nn

el
id

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

A
rth

ro
po

da

A
rth

ro
po

da
 

%
 o

f t
ot

al
 

ab
un

da
nc

e
M

ol
lu

sc
a

M
ol

lu
sc

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

Ec
hi

no
-

de
rm

at
a

Ec
hi

no
de

rm
at

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

M
is

c.
 T

ax
a

M
is

c.
 T

ax
a 

%
 o

f t
ot

al
 

ab
un

da
nc

e

7
22

4
13

9
12

4
89

.2
1

2
1.

44
4

2.
88

7
5.

04
2

1.
44

22
5

14
4

13
4

93
.0

6
0

0.
00

7
4.

86
0

0.
00

3
2.

08
22

6
28

6
20

5
71

.6
8

28
9.

79
48

16
.7

8
0

0.
00

5
1.

75

8
22

7
29

9
22

5
75

.2
5

21
7.

02
48

16
.0

5
5

1.
67

0
0.

00
22

8
23

7
15

6
65

.8
2

19
8.

02
59

24
.8

9
0

0.
00

3
1.

27
22

9
26

9
13

1
48

.7
0

96
35

.6
9

40
14

.8
7

0
0.

00
2

0.
74

9
23

0
29

7
31

10
.4

4
21

0
70

.7
1

49
16

.5
0

1
0.

34
6

2.
02

23
1

89
29

32
.5

8
11

12
.3

6
40

44
.9

4
0

0.
00

9
10

.1
1

23
2

82
30

36
.5

9
15

18
.2

9
29

35
.3

7
5

6.
10

3
3.

66

10
23

3
21

2
13

2
62

.2
6

44
20

.7
5

20
9.

43
14

6.
60

2
0.

94
23

4
11

6
98

84
.4

8
8

6.
90

7
6.

03
0

0.
00

3
2.

59
23

5
25

9
12

1
46

.7
2

39
15

.0
6

32
12

.3
6

48
18

.5
3

19
7.

34

11
23

8
44

1
57

12
.9

3
31

8
72

.1
1

23
5.

22
20

4.
54

23
5.

22
23

9
57

6
13

1
22

.7
4

32
8

56
.9

4
10

1.
74

81
14

.0
6

26
4.

51
24

0
40

37
92

.5
0

2
5.

00
1

2.
50

0
0.

00
0

0.
00

12
23

6
27

3
23

0
84

.2
5

10
3.

66
29

10
.6

2
1

0.
37

3
1.

10
23

7
88

6
20

4
23

.0
2

22
0

24
.8

3
8

0.
90

44
5

50
.2

3
9

1.
02

24
1

83
6

26
3

31
.4

6
20

7
24

.7
6

24
2.

87
30

2
36

.1
2

40
4.

78

13
24

2
0

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
24

3
0

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
24

4
12

3
11

2
91

.0
6

1
0.

81
7

5.
69

1
0.

81
2

1.
63

14
24

5
83

8
41

8
49

.8
8

10
0

11
.9

3
23

2
27

.6
8

8
0.

95
80

9.
55

24
6

69
1

50
9

73
.6

6
20

2.
89

13
7

19
.8

3
2

0.
29

23
3.

33
24

7
10

73
52

2
48

.6
5

52
4.

85
13

0
12

.1
2

15
1.

40
35

4
32

.9
9

15
24

8
39

1
82

20
.9

7
18

5
47

.3
1

37
9.

46
72

18
.4

1
15

3.
84

24
9

51
9

11
0

21
.1

9
31

3
60

.3
1

21
4.

05
51

9.
83

24
4.

62

Pi
ck

er
in

g 
Pa

ss
ag

e/
Sq

ua
xi

n 

H
en

de
rs

on
 In

le
t

To
tte

n 
In

le
t

El
d 

In
le

t

B
ud

d 
In

le
t

Po
rt 

of
 O

ly
m

pi
a

O
ak

la
nd

 B
ay

H
oo

d 
C

an
al

 (s
ou

th
)

Po
rt 

of
 S

he
lto

n

Page 156

T
ab

le
 2

1.
  C

on
tin

ue
d.

 



St
ra

tu
m

 
Sa

m
pl

e
To

ta
l 

A
bu

nd
an

ce
A

nn
el

id
a

A
nn

el
id

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

A
rth

ro
po

da

A
rth

ro
po

da
 

%
 o

f t
ot

al
 

ab
un

da
nc

e
M

ol
lu

sc
a

M
ol

lu
sc

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

Ec
hi

no
-

de
rm

at
a

Ec
hi

no
de

rm
at

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

M
is

c.
 T

ax
a

M
is

c.
 T

ax
a 

%
 o

f t
ot

al
 

ab
un

da
nc

e

25
0

52
7

55
10

.4
4

39
8

75
.5

2
10

1.
90

50
9.

49
14

2.
66

16
25

1
31

9
26

0
81

.5
0

15
4.

70
38

11
.9

1
1

0.
31

5
1.

57
25

2
18

8
99

52
.6

6
31

16
.4

9
30

15
.9

6
0

0.
00

28
14

.8
9

25
3

20
9

15
3

73
.2

1
9

4.
31

31
14

.8
3

1
0.

48
15

7.
18

17
25

4
16

4
48

29
.2

7
73

44
.5

1
36

21
.9

5
1

0.
61

6
3.

66
25

5
22

0
17

6
80

.0
0

4
1.

82
27

12
.2

7
3

1.
36

10
4.

55
25

6
46

8
29

0
61

.9
7

34
7.

26
30

6.
41

98
20

.9
4

16
3.

42

18
25

7
49

6
40

3
81

.2
5

25
5.

04
21

4.
23

2
0.

40
45

9.
07

25
8

29
7

93
31

.3
1

86
28

.9
6

86
28

.9
6

27
9.

09
5

1.
68

25
9

68
7

24
1

35
.0

8
23

3.
35

24
3.

49
38

0
55

.3
1

19
2.

77

19
26

0
24

4
14

9
61

.0
7

46
18

.8
5

34
13

.9
3

10
4.

10
5

2.
05

26
1

31
6

21
3

67
.4

1
19

6.
01

42
13

.2
9

25
7.

91
17

5.
38

26
2

59
2

27
5

46
.4

5
14

5
24

.4
9

23
3.

89
13

3
22

.4
7

16
2.

70

20
26

3
39

1
27

7
70

.8
4

22
5.

63
76

19
.4

4
13

3.
32

3
0.

77
26

4
10

7
35

32
.7

1
1

0.
93

59
55

.1
4

0
0.

00
12

11
.2

1
26

5
18

2
11

3
62

.0
9

8
4.

40
59

32
.4

2
0

0.
00

2
1.

10

21
26

6
27

4
15

0
54

.7
4

18
6.

57
96

35
.0

4
0

0.
00

10
3.

65
26

7
26

6
14

6
54

.8
9

84
31

.5
8

27
10

.1
5

3
1.

13
6

2.
26

26
8

22
2

14
7

66
.2

2
30

13
.5

1
33

14
.8

6
3

1.
35

9
4.

05

22
26

9
11

07
92

2
83

.2
9

98
8.

85
87

7.
86

0
0.

00
0

0.
00

27
0

12
87

11
78

91
.5

3
60

4.
66

38
2.

95
0

0.
00

11
0.

85
27

1
37

4
98

26
.2

0
14

2
37

.9
7

10
8

28
.8

8
23

6.
15

3
0.

80

23
27

2
36

7
20

5
55

.8
6

10
2

27
.7

9
48

13
.0

8
2

0.
54

10
2.

72
27

3
26

5
13

3
50

.1
9

86
32

.4
5

31
11

.7
0

5
1.

89
10

3.
77

27
4

63
3

53
7

84
.8

3
57

9.
00

35
5.

53
0

0.
00

4
0.

63

G
ig

 H
ar

bo
r

C
ol

vo
s P

as
sa

ge

D
ra

yt
on

 P
as

sa
ge

Ea
st

 A
nd

er
so

n 
Is

la
nd

/N
o.

 

C
ar

r I
nl

et

H
al

e 
Pa

ss
ag

e

C
as

e 
In

le
t

N
is

qu
al

ly
 R

ea
ch

Page 157 

T
ab

le
 2

1.
  C

on
tin

ue
d.

 



St
ra

tu
m

 
Sa

m
pl

e
To

ta
l 

A
bu

nd
an

ce
A

nn
el

id
a

A
nn

el
id

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

A
rth

ro
po

da

A
rth

ro
po

da
 

%
 o

f t
ot

al
 

ab
un

da
nc

e
M

ol
lu

sc
a

M
ol

lu
sc

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

Ec
hi

no
-

de
rm

at
a

Ec
hi

no
de

rm
at

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

M
is

c.
 T

ax
a

M
is

c.
 T

ax
a 

%
 o

f t
ot

al
 

ab
un

da
nc

e

24
27

5
51

0
27

5
53

.9
2

12
0

23
.5

3
10

9
21

.3
7

2
0.

39
4

0.
78

27
6

28
6

17
7

61
.8

9
3

1.
05

10
1

35
.3

1
0

0.
00

5
1.

75
27

7
26

5
15

1
56

.9
8

62
23

.4
0

13
4.

91
28

10
.5

7
11

4.
15

25
27

8
14

50
25

2
17

.3
8

64
4

44
.4

1
53

4
36

.8
3

11
0.

76
9

0.
62

27
9

45
4

62
13

.6
6

55
12

.1
1

31
9

70
.2

6
3

0.
66

15
3.

30
28

0
19

3
12

4
64

.2
5

29
15

.0
3

34
17

.6
2

1
0.

52
5

2.
59

26
28

1
34

4
14

4
41

.8
6

33
9.

59
15

8
45

.9
3

3
0.

87
6

1.
74

28
2

53
3

26
9

50
.4

7
55

10
.3

2
19

2
36

.0
2

3
0.

56
14

2.
63

28
3

72
3

17
8

24
.6

2
13

3
18

.4
0

38
2

52
.8

4
2

0.
28

28
3.

87
28

4
60

9
21

7
35

.6
3

12
6

20
.6

9
25

7
42

.2
0

2
0.

33
7

1.
15

27
28

5
63

5
26

4
41

.5
7

20
7

32
.6

0
14

4
22

.6
8

16
2.

52
4

0.
63

28
6

75
8

18
2

24
.0

1
10

2
13

.4
6

46
8

61
.7

4
1

0.
13

5
0.

66
28

7
18

79
32

5
17

.3
0

62
1

33
.0

5
89

8
47

.7
9

31
1.

65
4

0.
21

28
28

8
14

80
13

32
90

.0
0

67
4.

53
72

4.
86

0
0.

00
9

0.
61

28
9

98
6

76
7

77
.7

9
44

4.
46

16
9

17
.1

4
0

0.
00

6
0.

61
29

0
22

91
21

24
92

.7
1

52
2.

27
10

9
4.

76
0

0.
00

6
0.

26

29
29

1
62

2
21

5
34

.5
7

22
3.

54
37

8
60

.7
7

5
0.

80
2

0.
32

29
2

97
4

53
3

54
.7

2
48

4.
93

35
7

36
.6

5
22

2.
26

14
1.

44
29

3
22

35
17

92
80

.1
8

47
2.

10
36

3
16

.2
4

10
0.

45
23

1.
03

30
29

4
30

4
10

3
33

.8
8

36
11

.8
4

16
4

53
.9

5
0

0.
00

1
0.

33
29

5
29

24
22

59
77

.2
6

96
3.

28
52

1
17

.8
2

41
1.

40
7

0.
24

29
6

16
33

10
70

65
.5

2
91

5.
57

42
7

26
.1

5
38

2.
33

7
0.

43

31
29

7
18

47
12

83
69

.4
6

77
4.

17
42

2
22

.8
5

56
3.

03
9

0.
49

29
8

88
8

64
1

72
.1

8
94

10
.5

9
14

1
15

.8
8

11
1.

24
1

0.
11

29
9

12
96

11
79

90
.9

7
38

2.
93

64
4.

94
5

0.
39

10
0.

77

32
30

0
88

9
50

7
57

.0
3

6
0.

67
37

5
42

.1
8

0
0.

00
1

0.
11

N
.E

. C
om

m
en

ce
m

en
t 

B
a y

Th
ea

 F
os

s W
at

er
w

ay

M
id

dl
e 

W
at

er
w

ay

O
ut

er
 

C
om

m
en

ce
m

en
t B

ay

S.
 E

. C
om

m
en

ce
m

en
t 

B
a y

 (s
ho

re
lin

e)

S.
 E

.  
C

om
m

en
ce

m
en

t B
a y

Q
ua

rte
rm

as
te

r 
H

ar
bo

r

Ea
st

 P
as

sa
ge

Page 158

T
ab

le
 2

1.
  C

on
tin

ue
d.

 



St
ra

tu
m

 
Sa

m
pl

e
To

ta
l 

A
bu

nd
an

ce
A

nn
el

id
a

A
nn

el
id

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

A
rth

ro
po

da

A
rth

ro
po

da
 

%
 o

f t
ot

al
 

ab
un

da
nc

e
M

ol
lu

sc
a

M
ol

lu
sc

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

Ec
hi

no
-

de
rm

at
a

Ec
hi

no
de

rm
at

a 
%

 o
f t

ot
al

 
ab

un
da

nc
e

M
is

c.
 T

ax
a

M
is

c.
 T

ax
a 

%
 o

f t
ot

al
 

ab
un

da
nc

e

30
1

10
10

72
6

71
.8

8
6

0.
59

27
8

27
.5

2
0

0.
00

0
0.

00
30

2
11

45
67

2
58

.6
9

28
2.

45
44

0
38

.4
3

4
0.

35
1

0.
09

33
30

3
77

7
57

2
73

.6
2

22
2.

83
17

7
22

.7
8

0
0.

00
6

0.
77

30
4

53
5

46
9

87
.6

6
12

2.
24

51
9.

53
0

0.
00

3
0.

56
30

5
92

2
83

6
90

.6
7

25
2.

71
57

6.
18

2
0.

22
2

0.
22

H
yl

eb
os

 W
at

er
w

ay

B
la

ir 
W

at
er

w
ay

Page 159

T
ab

le
 2

1.
  C

on
cl

ud
ed

. 



 

Page 160 

Table 22.  Total abundance, taxa richness, Pielou's evenness, and Swartz's 
Dominance Index for the 1999 southern Puget Sound Sampling stations. 

Stratum Sample Total 
Abundance

Taxa 
Richness

Pielou's 
Evenness 

(J')  

Swartz's 
Dominance 

index  
      
1 206 688 32 0.45 2 

207 953 58 0.60 6 Port Ludlow 
208 1574 47 0.64 6 

      
2 209 408 68 0.65 14 

210 517 84 0.78 19 Hood Canal (north) 
211 587 92 0.79 22 

      
3 212 1966 82 0.39 2 

213 3476 85 0.33 2 Port Gamble Bay 
214 939 59 0.51 6 

      
4 215 753 46 0.80 13 

216 744 70 0.79 16 Quilcene Bay 
217 892 81 0.75 15 

      
5 218 281 43 0.74 11 

219 47 20 0.90 10 Dabob Bay 
220 26 16 0.95 10 

      
6 221 100 23 0.88 10 

222 219 34 0.74 8 Hood Canal (central) 
223 69 29 0.92 14 

      
7 224 139 29 0.71 7 

225 144 15 0.54 2 Hood Canal (south) 
226 286 27 0.66 5 

      
8 227 299 33 0.75 8 

228 237 35 0.79 9 Port of Shelton 
229 269 45 0.75 10 

      
9 230 297 27 0.44 3 

231 89 23 0.82 9 Oakland Bay 
232 82 21 0.88 9 

      
10 233 212 24 0.81 7 

234 116 18 0.71 4 Totten Inlet 
235 259 38 0.84 12 
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Stratum Sample Total 
Abundance

Taxa 
Richness

Pielou's 
Evenness 

(J')  

Swartz's 
Dominance 

index  
      
      
11 238 441 22 0.44 2 

239 576 29 0.59 4 Eld Inlet 
240 40 10 0.88 5 

      
12 236 273 23 0.38 2 

237 886 30 0.48 3 Budd Inlet 
241 836 39 0.57 4 

      
13 242     

243     Port of Olympia 
244 123 18 0.64 4 

      
14 245 838 103 0.83 23 

246 691 98 0.82 25 Pickering 
Passage/Squaxin 
Island 

247 1073 93 0.67 17 

      
15 248 391 27 0.70 6 

249 519 29 0.54 4 Henderson Inlet 
250 527 30 0.43 2 

      
16 251 319 47 0.74 11 

252 188 28 0.77 7 Case Inlet 
253 209 45 0.82 14 

      
17 254 164 56 0.79 18 

255 220 51 0.79 13 Nisqually Reach 
256 468 69 0.78 15 

      
18 257 496 57 0.60 7 

258 297 81 0.84 24 Drayton Passage 
259 687 79 0.59 8 

      
19 260 244 53 0.87 18 

261 316 63 0.84 20 East Anderson 
Island/No. Cormorant 
Passage 

262 592 106 0.78 23 

      
20 263 391 70 0.84 19 

264 107 22 0.76 7 Carr Inlet 
265 182 27 0.77 7 

Table 22.  Continued.
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Stratum Sample Total 
Abundance

Taxa 
Richness

Pielou's 
Evenness 

(J')  

Swartz's 
Dominance 

index  
      
      
21 266 274 66 0.87 22 

267 266 73 0.78 20 Hale Passage 
268 222 57 0.85 17 

      
22 269 1107 61 0.52 3 

270 1287 78 0.48 3 Gig Harbor 
271 374 63 0.74 11 

      
23 272 367 96 0.88 31 

273 265 75 0.84 25 Colvos Passage 
274 633 54 0.53 4 

      
24 275 510 90 0.80 20 

276 286 41 0.68 7 Quartermaster Harbor 
277 265 49 0.84 15 

      
25 278 1450 90 0.63 10 

279 454 39 0.48 4 East Passage 
280 193 66 0.86 26 

      
26 281 344 56 0.73 13 

282 533 66 0.64 10 
283 723 61 0.57 6 

Outer 
Commencement Bay 

284 609 89 0.73 19 
      
27 285 635 98 0.80 24 

286 758 70 0.62 9 S. E. Commencement 
Bay (shoreline) 287 1879 101 0.63 9 
      
28 288 1480 65 0.49 6 

289 986 71 0.72 10 S. E.  
Commencement Bay 290 2291 72 0.49 5 
      
29 291 622 53 0.56 5 

292 974 86 0.67 13 N.E. Commencement 
Bay 293 2235 86 0.46 4 
      
30 294 304 43 0.77 10 

295 2924 53 0.43 3 Thea Foss Waterway 
296 1633 79 0.60 8 

      

Table 22.  Continued.
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Stratum Sample Total 
Abundance

Taxa 
Richness

Pielou's 
Evenness 

(J')  

Swartz's 
Dominance 

index  
      
31 297 1847 117 0.59 12 

298 888 86 0.70 12 Middle Waterway 
299 1296 81 0.53 8 

      
32 300 889 50 0.60 5 

301 1010 50 0.53 3 Blair Waterway 
302 1145 61 0.58 5 

      
33 303 777 55 0.54 5 

304 535 56 0.59 6 Hylebos Waterway 
305 922 47 0.39 2 

      

 

Table 22.  Concluded.
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Table 23.  Spearman-rank correlation coefficients (rho, corrected for ties) and 
significance levels (p) between benthic infaunal indices and measures of grain size 
(% fines) and % TOC for all 1999 southern Puget Sound sites (n=100). 

Benthic index % Fines (p) % TOC (p) 
  

Total Abundance -0.052 ns -0.234 * 
Taxa Richness -0.301 ** -0.676 **** 
Pielou's Evenness (J') -0.144 ns -0.155 ns 
Swartz's Dominance Index -0.224 * -0.480 **** 
Annelid Abundance -0.068 ns -0.359 *** 
Arthropod Abundance -0.079 ns -0.262 ** 
Mollusca Abundance -0.190 ns -0.256 * 
Echinoderm Abundance 0.058 ns -0.084 ns 
Miscellaneous Taxa Abundance -0.092 ns -0.271 ** 

  
ns = p > 0.05 
* = p < 0.05 
** = p < 0.01 
*** = p < 0.001 
**** = p < 0.0001 
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Table 24.  Spearman-rank correlations coefficients (rho, corrected for ties) and 
significance levels (p) for nine indices of benthic infaunal structure and results of 
four toxicity tests for all 1999 southern Puget Sound sites (n=100). 

Benthic index Amphipod 
survival 

(p) Urchin 
fertilization

(p) Microbial 
biolumin-
escence 

(p) Cytochrome 
P450 HRGS

(p) 

   
Total Abundance -0.018 ns 0.176 ns -0.196 ns 0.306 ** 
Taxa Richness -0.047 ns 0.042 ns 0.241 * -0.121 ns 
Pielou's Evenness (J') 0.032 ns -0.173 ns 0.482 **** -0.479 ****
Swartz's Dominance 
Index 

0.029 ns -0.109 ns 0.545 **** -0.503 ****

Annelid Abundance -0.061 ns 0.093 ns -0.124 ns 0.196 ns 
Arthropod Abundance 0.008 ns 0.226 * 0.091 ns -0.105 ns 
Mollusca Abundance 0.048 ns -0.015 ns 0.064 ns 0.219 * 
Echinoderm 
Abundance 

-0.092 ns 0.152 ns -0.041 ns -0.097 ns 

Miscellaneous Taxa 
Abundance 

0.002 ns 0.325 ** 0.203 * -0.330 *** 

   
ns = p > 0.05 
* = p < 0.05 
** = p < 0.01 
*** = p < 0.001 
**** = p < 0.0001 
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Table 32.  Percentages of southern Puget Sound study area with indices of degraded 
sediments based upon the sediment quality triad of data. 

Sediment Quality Index Category                    
(number of parameters impaired /station) No. (%) of 

stations km2 

(%) of 
total 
study 
area 

     

1999 Southern Puget Sound 100 (100.0) 857.7 
(100.0
) 

High  
(no parameter impaired) 36 (36.0) 493.5 (57.5) 

Intermediate/High  
(one parameter impaired chemistry, toxicity, or benthos)  35 (35.0) 274.1 (32.0) 

Intermediate/Degraded  
(two parameters impaired chemistry, toxicity, or benthos) 18 (18.0) 85.7 (10.0) 

Degraded 
(three parameters impaired chemistry, toxicity, or benthos) 11 (11.0) 4.4 (0.5) 
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Table 33.  Estimated spatial extent of toxicity in three regions of Puget Sound and in 
the entire survey area at levels exceeding critical values.  (Shaded area = total 
number of stations and area of each region) 

Toxicity Test Criteria No. (%) of 
stations km2 

(%) of total 
study area 

1997 Northern Puget Sound 100 (100.0) 773.9 (100.0) 
Amphipod survival     

<80% of controls 0 (0.0) 0.0 (0.0) 
     

Urchin fertilization (<80% of controls)      
100% pore water 15 (15.0) 40.6 (5.2) 
50% pore water 7 (7.0) 11.5 (1.5) 
25% pore water 6 (6.0) 8.3 (1.1) 

     
Microbial bioluminescence     

<80% of controls 98 (98.0) 761.9 (98.4) 
<0.51 mg/mL 5 (5.0) 9.0 (1.2) 
<0.06 mg/mL 0 (0.0) 0.0 (0.0) 

     
Cytochrome  P450 HRGS     

>11.1 µg/g 15 (15.0) 20.1 (2.6) 
>37.1 µg/g 4 (4.0) 0.2 (0.03) 

1998 Central Puget Sound 100 (100.0) 731.7 (100.0) 
Amphipod survival     

<80% of controls 1 (1.0) 1.0 (0.1) 
     

Urchin fertilization (<80% of controls)      
100% pore water 9 (9.0) 4.0 (0.5) 
50% pore water 3 (3.0) 1.5 (0.2) 
25% pore water 3 (3.0) 4.2 (0.6) 

     
Microbial bioluminescence     

<80% of controls 61 (61.0) 348.9 (47.7) 
<0.51 mg/mL 0 (0.0) 0.0 (0.0) 

<0.06 mg/mL 0 (0.0) 0.0 (0.0) 
     

Cytochrome P450 HRGS     
>11.1 µg/g 62 (62.0) 237.1 (32.4) 
>37.1 µg/g 27 (27.0) 23.7 (3.2) 

1999 Southern Puget Sound 100 (100.0) 857.7 (100.0) 
Amphipod survival     

<80% of controls 0 (0.0) 0.0 (0.0) 
     

Urchin fertilization (<80% of controls)      
100% pore water 8 (8.0) 48.9 (5.7) 
50% pore water 4 (4.0) 4.7 (0.5) 
25% pore water 3 (3.0) 2.2 (0.3) 
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Toxicity Test Criteria No. (%) of 
stations km2 

(%) of total 
study area 

Microbial bioluminescence     
<80% of controls 78 (78.0) 518.6 (60.5) 
<0.51 mg/mL 3 (3.0) 1.5 (0.2) 
<0.06 mg/mL 0 (0.0) 0.0 (0.0) 

     
Cytochrome P450 HRGS     

>11.1 µg/g 57 (57.0) 329.2 (38.4) 
>37.1 µg/g 17 (17.0) 43.1 (5.0) 

Total Study Area 300 (100.0) 2363.3 (100.0) 
Amphipod survival     

<80% of controls 1 (0.3) 1.0 (0.04) 
     

Urchin fertilization (<80% of controls)      
100% pore water 32 (10.7) 93.5 (4.0) 
50% pore water 14 (4.7) 17.7 (0.7) 
25% pore water 12 (4.0) 14.6 (0.6) 

     
Microbial bioluminescence     

<80% of controls 237 (79.0) 1629.3 (68.9) 
<0.51 mg/mL 8 (2.7) 10.5 (0.4) 
<0.06 mg/mL 0 (0.0) 0.0 (0.0) 

     
Cytochrome P450 HRGS     

>11.1 µg/g 134 (44.7) 586.3 (24.8) 
>37.1 µg/g 48 (16.0) 67.0 (2.8) 

          

Table 33.  Concluded.
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Table 34.  Spatial extent of toxicity (km2 and percentages of total area) in amphipod 
survival tests performed with solid-phase sediments from 27 U.S. bays and 
estuaries.  Unless specified otherwise, test animals were Ampelisca abdita. 

    Amphipod survival** 
Survey Areas Year 

sampled 
No. of 

sediment 
samples 

Total area 
of survey 

(km2) 

Toxic area 
(km2) 

Pct. of area 
toxic 

 Newark Bay 93 57 13 10.8 85.0% 
 San Diego Bay* 93 117 40.2 26.3 65.8% 
 California coastal lagoons 94 30 5 2.9 57.9% 
 Tijuana River* 93 6 0.3 0.2 56.2% 
 Long Island Sound 91 60 71.9 36.3 50.5% 
 Hudson-Raritan Estuary 91 117 350 133.3 38.1% 
 San Pedro Bay* 92 105 53.8 7.8 14.5% 
 Biscayne Bay  95/96 226 484.2 62.3 12.9% 
 Boston Harbor 93 55 56.1 5.7 10.0% 
 Delaware Bay 97 73 2346.8 145.4 6.2% 
 Savannah River 94 60 13.1 0.2 1.2% 
 St. Simons Sound 94 20 24.6 0.1 0.4% 
 Tampa Bay 92/93 165 550 0.5 0.1% 
 central Puget Sound 98 100 737 1.0 0.1% 
 Pensacola Bay 93 40 273 0.04 0.0% 
 Galveston Bay 96 75 1351.1 0 0.0% 
southern Puget Sound 99 100 857.7 0 0.0% 
 northern Puget Sound 97 100 773.9 0 0.0% 
 Choctawhatchee Bay 94 37 254.5 0 0.0% 
 Sabine Lake 95 66 245.9 0 0.0% 
 Apalachicola Bay 94 9 187.6 0 0.0% 
 St. Andrew Bay 93 31 127.2 0 0.0% 
 Charleston Harbor 93 63 41.1 0 0.0% 
 Winyah Bay 93 9 7.3 0 0.0% 
 Mission Bay* 93 11 6.1 0 0.0% 
 Leadenwah Creek 93 9 1.7 0 0.0% 
 San Diego River* 93 2 0.5 0 0.0% 
Cumulative National estuarine average based upon data collected through: 
     •1997  1543 7278.8 431.8 5.9% 
* tests performed with Rhepoxynius abronius 
** Critical value <80% of mean percent survival in control 
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Table 35.  Spatial extent of toxicity (km2 and percentages of total area) in sea urchin 
fertilization tests performed with 100% sediment pore waters from 23 U. S. bays 
and estuaries.  Unless specified differently, tests performed with Arbacia punctulata. 

    Urchin fertilization in 
100% pore waters* 

Survey areas Year 
sampled 

No. of 
sediment 
samples 

Total area of 
survey (km2)

Toxic area 
(km2) 

Pct. of area 
toxic 

      
 San Pedro Baya 92 105 53.8 52.6 97.7%
 Tampa Bay 92/93 165 550 463.6 84.3%
 San Diego Bayb 93 117 40.2 25.6 76.0%
 Mission Bayb 93 11 6.1 4 65.9%
 Tijuana Riverb 93 6 0.3 0.2 56.2%
 San Diego Riverb 93 2 0.5 0.3 52.0%
 Biscayne Bay  95/96 226 484.2 229.5 47.4%
 Choctawhatchee Bay 94 37 254.5 113.1 44.4%
 California coastal 

lagoons 
94 30 5 2.1 42.7%

 Winyah Bay 93 9 7.3 3.1 42.2%
 Apalachicola Bay 94 9 187.6 63.6 33.9%
 Galveston Bay 96 75 1351.1 432 32.0%
 Charleston Harbor 93 63 41.1 12.5 30.4%
 Savannah River 94 60 13.1 2.42 18.4%
 Delaware Bay 97 73 2346.8 247.5 10.5%
 Boston Harbor 93 55 56.1 3.8 6.6%
southern Puget Soundc 99 100 857.7 48.9 5.7%
 Sabine Lake 95 66 245.9 14 5.7%
 Pensacola Bay 93 40 273 14.4 5.3%
 northern Puget Soundc 97 100 773.9 40.6 5.2%
 St. Simons Sound 94 20 24.6 0.7 2.6%
 St. Andrew Bay 93 31 127.2 2.3 1.8%
 central Puget Soundc 98 100 731.7 4.4 0.5%
 Leadenwah Creek 93 9 1.7 0 0.0%

  
Cumulative National estuarine average based upon data collected through: 
     •1997 1309 6837.8 1728 25.3%
a Tests performed for embryological development of Haliotis rufescens 
b Tests performed for embryological development of Strongylocentrotus purpuratus 
c Tests performed for fertilization success of S. purpuratus 
* Critical value <80% of control 
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Table 36.  Spatial extent of toxicity (km2 and percentages of total area) in microbial 
bioluminescence tests performed with solvent extracts of sediments from 18 U. S. 
bays and estuaries. 

    Microbial 
bioluminescence* 

Survey areas Year 
sampled 

No. of 
sediment 
samples 

Total area 
of survey 

(km2) 

Toxic area 
(km2) 

Pct. of area 
toxic 

      
 Choctawhatchee Bay 94 37 254.47 254.5 100.0%
 St. Andrew Bay 93 31 127.2 127 100.0%
 Apalachicola Bay 94 9 187.6 186.8 99.6%
 Pensacola Bay 93 40 273 262.8 96.4%
 Galveston Bay 96 75 1351.1 1143.7 84.6%
 Sabine Lake 95 66 245.9 194.2 79.0%
 Winyah Bay 93 9 7.3 5.13 70.0%
 Long Island Sound 91 60 71.86 48.8 67.9%
 Savannah River 94 60 13.12 7.49 57.1%
 Biscayne Bay  95/96 226 484.2 248.4 51.3%
 St. Simons Sound 94 20 24.6 11.4 46.4%
 Boston Harbor 93 55 56.1 25.8 44.9%
 Charleston Harbor 93 63 41.1 17.6 42.9%
 Hudson-Raritan Estuary 91 117 350 136.1 38.9%
 Leadenwah Creek 93 9 1.69 0.34 20.1%
 Delaware BayA 97 73 2346.8 114 4.9%
 northern Puget Sound A 97 100 773.9 17.7 2.2%
southern Puget SoundA 99 100 857.7 1.5 0.2%
 Tampa Bay 92/93 165 550 0.6 0.1%
 central Puget Sound A 98 100 731.7 0 0.0%

  
Cumulative National estuarine average based upon data collected through: 
     •1997 1215 7160 2802.4 39.1%
  
A Critical value of <0.51 mg/mL 
* Critical value of <80% of control 
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Table 37.  Spatial extent of toxicity (km2 and percentages of total area) in 
cytochrome P450 HRGS tests performed with solvent extracts of sediments from 8 
U. S. bays and estuaries. 

    Cytochrome P450 
HRGS (>11.1 

µg/g) 

 Cytochrome 
P450 HRGS 
(>37.1 µg/g) 

Survey areas Year 
sampled

No. of 
sediment 
samples 

Total 
area of 
survey 
(km2) 

Toxic 
area 

(km2) 

Pct. of 
area 
toxic 

Toxic 
area 

(km2) 

Pct. of 
area 
toxic 

         
northern Chesapeake Bay 1998 63 2265.0 1127.3 49.8  633.9 28.0 
southern Puget Sound 1999 100 857.7 329.2 38.4  43.1 5.0 
Delaware Bay 1997 73 2346.8 145.2 6.2  80.5 3.4 
central Puget Sound 1998 100 731.7 237.1 32.4  23.7 3.2 
Sabine Lake 1995 65 245.9 6.7 2.7  1.7 0.7 
northern Puget Sound 1997 100 806.2 20.1 2.5  0.2 0.0 
Southern Cal. Estuaries 1994 30 5.0 2.3 46.8  0.0 0.0 
Biscayne Bay, 1996 1996 121 271.4 8.8 3.3  0.0 0.0 
Galveston Bay 1996 75 1351.5 56.7 4.2  0.0 0.0 
         
Cumulative National estuarine averages based upon data collected through: 
     •1997 627 8023.5 1604.2 20.0  740 9.2 
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Table 38.  Estimated spatial extent of chemical contamination in three regions of 
Puget Sound and in the entire survey area as measured with three sets of critical 
values.  The number and % of stations and the number and % of the total study 
area (km2) are calculated for those stations where at least one chemical was 
measured at levels above state criteria and/or NOAA guidelines (excluding data for 
nickel.) (Shaded area = total number of stations and area of each region) 

Sediment Guideline or Criteria Exceeded No. (%) of 
stations km2 

(%) of 
total study 

area 

1997 Northern Puget Sound 100 (100.0) 773.9 (100.0) 
ERM 9 (9.0) 9.5 (1.2) 
SQS 71 (71.0) 529.8 (68.5) 
CSL 58 (58.0) 434.3 (56.1) 
Total for any one guideline or criteria exceeded 71 (71.0) 529.8 (68.5) 

1998 Central Puget Sound 100 (100.0) 731.7 (100.0) 
ERM 21 (21.0) 11.4 (1.6) 
SQS 93 (93.0) 669.0 (91.4) 
CSL 92 (92.0) 667.9 (91.3) 
Total for any one guideline or criteria exceeded 93 (93.0) 669.0 (91.4) 

1999 Southern Puget Sound 100 (100.0) 857.7 (100.0) 
ERM 9 (9.0) 9.9 (1.2) 
SQS 17 (17.0) 57.2 (6.7) 
CSL 10 (10.0) 44.2 (5.1) 
Total for any one guideline or criteria exceeded 20 (20.0) 60.7 (7.1) 

Total Study Area 300 (100.0) 2363.3 (100.0) 
ERM 39 (13.0) 30.7 (1.3) 
SQS 181 (60.3) 1256.0 (53.1) 
CSL 160 (53.3) 1146.3 (48.5) 
Total for any one guideline or criteria exceeded 184 (61.3) 1259.5 (53.3) 
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Table 39.  Percentages of Puget Sound study areas with indices of degraded 
sediments based upon the sediment quality triad of data.  (Shaded area = total 
number of stations and area of each region) 

Sediment Quality Index Category           
(number of parameters impaired /station) No. (%) of 

stations km2 

(%) of 
total study 

area 
     

1997 Northern Puget Sound 100 (100.0) 773.9 (100.0) 
High (0) 26 (26.0) 211.9 (27.4) 
Intermediate/High (1) 52 (52.0) 516.2 (66.7) 
Intermediate/Degraded (2) 12 (12.0) 35.5 (4.6) 
Degraded (3) 10 (10.0) 10.3 (1.3) 

1998 Central Puget Sound 100 (100.0) 731.7 (100.0) 
High (0) 2 (2.0) 59.5 (8.1) 
Intermediate/High (1) 38 (38.0) 436.1 (59.6) 
Intermediate/Degraded (2) 39 (39.0) 215.7 (29.5) 
Degraded (3) 21 (21.0) 20.4 (2.8) 

1999 Southern Puget Sound 100 (100.0) 857.7 (100.0) 
High (0) 36 (36.0) 493.5 (57.5) 
Intermediate/High (1) 35 (35.0) 274.1 (32.0) 
Intermediate/Degraded (2) 18 (18.0) 85.7 (10.0) 
Degraded (3) 11 (11.0) 4.4 (0.5) 

Total Study Area 300 (100.0) 2363.3 (100.0) 
High (0) 64 (21.3) 764.9 (32.4) 
Intermediate/High (1) 125 (41.7) 1226.4 (51.9) 
Intermediate/Degraded (2) 69 (23.0) 336.8 (14.3) 
Degraded (3) 42 (14.0) 35.1 (1.5) 
          

High - (no parameter impaired) 
Intermediate/High - (one parameter impaired chemistry, toxicity, or benthos)  
Intermediate/Degraded - (two parameters impaired chemistry, toxicity, or benthos) 
Degraded - (three parameters impaired chemistry, toxicity, or benthos) 
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Appendix A 
Historical surveys previously conducted in the 1999 southern Puget Sound study 

area from which the data were archived in the SEDQUAL database. 
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 Appendix B 
Detected chemicals from southern Puget Sound SEDQUAL sediment samples 
exceeding Washington State Sediment Quality Standards (SQS) and Cleanup 

Screening Levels (CSL). 
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Appendix C 
Navigation report for the 1999 southern Puget Sound sampling stations. 
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Appendix D 
NOAA Sediment Guidelines and Washington State Criteria. 
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Appendix D.  NOAA sediment quality guidelines and Washington State sediment 
quality criteria. 

NOAA Guidelines Washington State Criteria

Chemical ERL1 ERM1 Unit1 SQS2 CSL Unit2 

 

Trace metals  

Arsenic 8.2 70 PPM Dry Weight 57 93 PPM Dry Weight 

Cadmium 1.2 9.6 PPM Dry Weight 5.1 6.7 PPM Dry Weight 

Chromium 81 370 PPM Dry Weight 260 270 PPM Dry Weight 

Copper 34 270 PPM Dry Weight 390 390 PPM Dry Weight 

Lead 46.7 218 PPM Dry Weight 450 530 PPM Dry Weight 

Mercury 0.15 0.71 PPM Dry Weight 0.41 0.59 PPM Dry Weight 

Nickel 20.9 51.6 PPM Dry Weight NA NA PPM Dry Weight 

Silver 1 3.7 PPM Dry Weight 6.1 6.1 PPM Dry Weight 

Zinc 150 410 PPM Dry Weight 410 960 PPM Dry Weight 

 

Organic Chemicals  

 

LPAH  

2-Methylnaphthalene 70 670 PPB dry weight 38 64 PPM Organic Carbon 

Acenaphthene 16 500 PPB dry weight 16 57 PPM Organic Carbon 

Acenaphthylene 44 640 PPB dry weight 66 66 PPM Organic Carbon 

Anthracene 85.3 1100 PPB dry weight 220 120 PPM Organic Carbon 

Fluorene 19 540 PPB dry weight 23 79 PPM Organic Carbon 

Naphthalene 160 2100 PPB dry weight 99 170 PPM Organic Carbon 

Phenanthrene 240 1500 PPB dry weight 100 480 PPM Organic Carbon 

 

Sum of LPAHs:  

Sum of 6 LPAH (Ch. 173-204 WAC)       NA NA 370 780 PPM Organic C arbon 

Sum of 7 LPAH (Long et al., 1995) 552 3160 PPB dry weight NA NA 

 

HPAH  

Benzo(a)anthracene 261 1600 PPB dry weight 110 270 PPM Organic Carbon 

Benzo(a)pyrene 430 1600 PPB dry weight 99 210 PPM Organic Carbon 

Benzo(g,h,I)perylene NA NA  31 78 PPM Organic Carbon 
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NOAA Guidelines Washington State Criteria

Chemical ERL1 ERM1 Unit1 SQS2 CSL Unit2 

Chrysene 384 2800 PPB dry weight 110 460 PPM Organic Carbon

Dibenzo(a,h)anthracene 63.4 260 PPB dry weight 12 33 PPM Organic Carbon 

Fluoranthene 600 5100 PPB dry weight 160 120 PPM Organic Carbon 

Indeno(1,2,3-c,d)pyrene NA NA  34 88 PPM Organic Carbon 

Pyrene 665 2600 PPB dry weight 1000 140 PPM Organic Carbon 

Total Benzofluoranthenes NA NA  230 450 PPM Organic Carbon 

 

Sum of HPAHs:  

Sum of 9 HPAH (Ch. 173-204 WAC)      NA NA 960 530 PPM Organic Carbon 

Sum of 6 HPAH (Long et al., 1995) 1700 9600 PPB dry weight NA NA 

 

Sum of 13 PAHs 4022 44792 PPB dry weight NA NA  

 

Phenols  

2,4-Dimethylphenol NA NA  29 29 PPB Dry Weight 

2-Methylphenol NA NA  63 63 PPB Dry Weight 

4-Methylphenol NA NA  670 670 PPB Dry Weight 

Pentachlorophenol NA NA  360 690 PPB Dry Weight 

Phenol NA NA  420 120 PPB Dry Weight 

 

Phthalate Esters  

Bis (2-Ethylhexyl) Phthalate NA NA  47 78 PPM Organic Carbon 

Butylbenzylphthalate NA NA  4.9 64 PPM Organic Carbon 

Diethylphthalate NA NA  61 110 PPM Organic Carbon 

Dimethylphthalate NA NA  53 53 PPM Organic Carbon 

Di-N-Butyl Phthalate NA NA  220 170 PPM Organic Carbon 

Di-N-Octyl Phthalate NA NA  58 450 PPM Organic Carbon 

 

Chlorinated Pesticide and PCBs  

4,4'-DDE 2.2 27 PPB dry weight NA NA 

Total DDT 1.58 46.1 PPB dry weight NA NA 

Total PCB:  

Total Aroclors (Ch. 173-204 WAC)         NA NA 12 65 PPM Organic Carbon 

Total congeners (Long et al., 1995): 22.7 180 PPB dry weight NA NA 

Appendix D.  Continued.
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NOAA Guidelines Washington State Criteria

Chemical ERL1 ERM1 Unit1 SQS2 CSL Unit2 

 

Miscellaneous Chemicals  

1,2-Dichlorobenzene NA NA  2.3 2.3 PPM Organic Carbon 

1,2,4-Trichlorobenzene NA NA  0.81 1.8 PPM Organic Carbon 

1,4-Dichlorobenzene NA NA  3.1 9 PPM Organic Carbon 

Benzoic Acid NA NA  650 650 PPB Dry Weight 

Benzyl Alcohol NA NA  57 73 PPB Dry Weight 

Dibenzofuran NA NA  15 58 PPM Organic Carbon 

Hexachlorobenzene NA NA  0.38 2.3 PPM Organic Carbon 

Hexachlorobutadiene NA NA  3.9 6.2 PPM Organic Carbon 

N-Nitrosodiphenylamine NA NA  11 11 PPM Organic Carbon 

 
1 Long, Edward R., Donald D. Macdonald, Sherri L. Smith and Fred D. Calder.  1995.  
Incidence of adverse biological effect with ranges of chemical concentrations in marine 
and estuarine sediments.  Environmental Management 19(1): 81-97. 

2 Sediment Management Standard Chapter 173-204, Amended December 1995 
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Appendix E 
Infaunal taxa removed from the 1999 southern Puget 

Sound list of benthic infauna. 
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Appendix E.  Species eliminated from the 1999 southern Puget Sound list of benthic 
infauna. 

Elimination 
Criteria 

Phylum Class Family Taxon Authorship 

      

Incidental1    Cyclopoida  

  Insecta Tipulinae Ctenophora Meigen, 1803 

 Ctenophora   Ctenophora  

  Cirripedia Balanidae Balanus sp  

   Hyperiidae Hyperiidae  

      

Meiofauna2  Copepoda  Calanoida Mauchline, 1988 

    Calanus pacificus Brodsky, 1948 

    Harpacticoida  

      

Presence/ 
Absence3 

Porifera Demospongiae  Demospongiae  

  Hydrozoa Aglaopheniidae Aglaophenia diegensis Torrey, 1904 

   Campanulariidae Clytia sp  

    Obelia dichotoma (Linnaeus, 1758) 

   Corymorphidae Euphysa ruthae Norenburg and 
Morse, 1983 

   Hydromedusae Hydromedusa  

   Lafoeidae Lagenicella neosocialis  

   Pandeidae Pandeidae  

   Plumulariidae Plumularia setacea (Linnaeus, 1758) 

   Sertulariidae Abietinaria sp  

    Hydrallmania distans Nutting, 1899 

    Selaginopsis triserialis Mereschkowsky, 1878
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Elimination 
Criteria 

Phylum Class Family Taxon Authorship 

    Sertularella sp  

   Tubulariidae Ectopleura marina  

 Bryozoa Gymnolaemata Alcyonidiidae Alcyonidium sp  

   Hippothoidae Celleporella hyalina (Linnaeus, 1767) 

   Vesiculariidae Bowerbankia gracilis Leidy, 1855 

 Entoprocta  Barentsiidae Barentsia benedeni (Foettinger, 1887) 

    Barentsia gracilis  

   Pedicellinidae Myosoma spinosa  

      

Incidental1: organisms caught which are not soft sediment infaunal invertebrates -e.g., hard substrate 
dwellers, larval species, etc. 
Meiofauna2: organisms which are smaller than the infaunal fraction but accidentally caught by the 1 mm 
screen. 
Presence/Absence3: organisms, such as colonial species, for which a count of individuals cannot be made. 

Appendix E.  Concluded.



Page 227 

Appendix F 

Field notes for the 1999 southern Puget Sound sampling stations. 
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Appendix G 
Chemistry data summary. 

Table 1.  Grain size distribution for the 1999 southern Puget 
Sound sampling stations (tabular form). 

Table 2.  Total organic carbon, temperature, and salinity 
measurements for the 1999 southern Puget Sound sampling 
stations. 

Table 3.  Summary statistics for metals and organics data. 

Figure 1. Grain size distribution for the 1999 southern Puget 
Sound sampling stations (frequency distribution). 
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Appendix G,  Table 2.  Total organic carbon, temperature, and salinity 
measurements for the 1999 southern Puget Sound sampling stations. 

Stratum 
Number Location 

Sample 
Number 

Salinity 
(ppt) 

Temperature 
(°C) 

% 
TOC 

      
206 30.0 11.0 0.58 
207 30.0 12.0 0.36 

1 Port Ludlow 

208 30.0 14.0 2.30 
      

209 30.0 11.0 0.59 
210 30.0 11.0 0.48 

2 Hood Canal (north) 

211 31.0 11.5 0.26 
      

212 30.0 12.0 0.53 
213 30.0 13.5 0.37 

3 Port Gamble Bay 

214 30.0 12.0 4.40 
      

215 25.0 11.0 3.20 
216 27.0 12.0 1.30 

4 Quilcene Bay 

217 30.0 11.0 1.40 
      

218 29.0 11.0 1.40 
219 25.0 12.0 2.70 

5 Dabob Bay 

220 27.0 12.0 2.70 
      

221 25.0 12.0 2.40 
222 30.0 11.5 1.60 

6 Hood Canal (central) 

223 27.0 12.0 2.70 
      

224 24.0 11.5 3.80 
225 25.0 11.5 4.20 

7 Hood Canal (south) 

226 25.0 11.0 2.00 
      

227 27.0 15.0 2.60 
228 25.0 15.0 2.40 

8 Port of Shelton 

229 25.0 14.5 1.50 
      

230 27.0 13.0 2.60 9 Oakland Bay 
231 27.0 14.5 3.10 
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Stratum 
Number Location 

Sample 
Number 

Salinity 
(ppt) 

Temperature 
(°C) 

% 
TOC 

  232 27.0 14.0 3.30 
      

233 30.0 14.0 2.40 
234 28.0 13.5 2.70 

10 Totten Inlet 

235 30.0 13.0 2.30 
      

238 30.0 12.0 2.60 
239 30.0 12.0 2.30 

11 Eld Inlet 

240 30.0 12.0 2.90 
      

236 30.0 12.0 3.00 
237 30.0 12.0 2.40 

12 Budd Inlet 

241 30.0 11.8 2.30 
      

242 30.0 12.0 3.90 
243 30.0 12.0 3.80 

13 Port of Olympia 

244 31.0 13.0 2.40 
      

245 30.0 13.0 0.24 
246 30.0 11.5 0.56 

14 Pickering 
Passage/Squaxin 
Island 247 30.0 13.0 0.31 

      
248 30.0 11.5 2.60 
249 30.0 12.0 2.90 

15 Henderson Inlet 

250 
Not 

Recorded 
Not 

Recorded 3.10 
      

251 30.0 11.0 1.70 
252 30.0 11.0 2.10 

16 Case Inlet 

253 30.0 11.0 2.10 
      

254 31.0 11.0 0.24 
255 30.0 11.0 1.10 

17 Nisqually Reach 

256 30.0 11.0 0.58 
      

257 30.0 11.0 1.30 
258 30.0 11.5 0.20 

18 Drayton Passage 

259 30.0 11.0 0.38 

Appendix G, Table 2.  Continued.
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Stratum 
Number Location 

Sample 
Number 

Salinity 
(ppt) 

Temperature 
(°C) 

% 
TOC 

      
260 30.0 11.0 1.30 
261 30.5 11.5 0.69 

19 East Anderson 
Island/No. Cormorant 
Passage 262 30.0 11.0 0.40 

      
263 30.0 10.5 0.46 
264 30.0 11.0 2.50 

20 Carr Inlet 

265 30.0 11.0 2.60 
      

266 31.0 11.5 0.12 
267 30.0 11.0 0.25 

21 Hale Passage 

268 31.0 10.5 0.07 
      

269 32.0 11.5 0.88 
270 32.0 11.5 1.00 

22 Gig Harbor 

271 32.0 11.5 1.90 
      

272 32.0 10.8 0.33 
273 23.0 11.0 0.15 

23 Colvos Passage 

274 32.0 10.8 0.22 
      

275 30.0 12.0 0.27 
276 30.0 12.0 2.50 

24 Quartermaster Harbor 

277 30.0 12.0 1.30 
      

278 30.0 10.0 3.90 
279 30.0 10.5 2.30 

25 East Passage 

280 30.0 11.0 0.06 
      

281 29.0 11.0 1.60 
282 23.0 11.0 1.40 
283 29.0 11.0 1.40 

26 Outer Commencement 
Bay 

284 29.0 12.0 0.50 
      

285 30.0 11.0 0.48 
286 27.0 11.0 1.10 

27 S. E. Commencement 
Bay (shoreline) 

287 27.0 12.0 2.30 
      

Appendix G, Table 2.  Continued.
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Stratum 
Number Location 

Sample 
Number 

Salinity 
(ppt) 

Temperature 
(°C) 

% 
TOC 

288 31.0 11.0 1.70 
289 30.0 10.0 1.70 

28 S. E.  Commencement 
Bay 

290 30.0 11.0 1.80 
      

291 28.0 11.0 1.50 
292 29.0 11.0 1.80 

29 N.E. Commencement 
Bay 

293 25.0 11.5 2.20 
      

294 23.0 14.0 7.90 
295 30.0 11.0 2.30 

30 Thea Foss Waterway 

296 31.0 11.0 2.20 
      

297 31.0 11.5 1.90 
298 31.0 12.0 1.30 

31 Middle Waterway 

299 31.0 11.0 1.40 
      

300 30.0 11.0 0.87 
301 30.0 11.0 0.93 

32 Blair Waterway 

302 30.0 11.0 1.00 
      

303 28.0 11.0 2.70 
304 28.0 12.0 1.10 

33 Hylebos Waterway 

305 29.0 11.0 2.20 
      

  minimum 23.0 10.0 0.1 

  maximum 32.0 15.0 7.9 

  median 30.0 11.5 1.7 

  mean 29.1 11.7 1.8 

 standard deviation 2.1 1.0 1.3 

            

Appendix G, Table 2.  Concluded.
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Appendix H.  1999 Southern Puget Sound benthic infaunal species list. 

Phylum Class Family Taxon Authorship 

     

Porifera Demospongiae  Demospongiae  

Cnidaria Entozoan  Nynantheae  

  Cerianthidae Cerianthidae  

   Pachycerianthus fimbriatus Mcmurrich, 1910

  Edwardsiidae Edwardsia sipunculoides (Stimpson, 1853) 

  Halcampidae Halcampa decemtentaculata Hand, 1954 

   Halcampa sp  

   Peachia quinquecapitata Mcmurrich, 1913

  Metridiidae Metridium sp  

  Pennatulidae Ptilosarcus gurneyi (Gray, 1860) 

  Virgulariidae Acanthoptilum gracile (Gabb, 1862) 

   Stylatula elongata (Gabb, 1862) 

   Virgularia sp  

 Hydrozoa Aglaopheniidae Aglaophenia diegensis Torrey, 1904 

  Campanulariidae Clytia sp  

   Obelia dichotoma (Linnaeus, 1758) 

  Corymorphidae Euphysa ruthae Norenburg and 
Morse, 1983 

  Hydromedusae Hydromedusa  

  Lafoeidae Lagenicella neosocialis  

  Pandeidae Pandeidae  

  Plumulariidae Plumularia setacea (Linnaeus, 1758) 

  Sertulariidae Abietinaria sp  

   Hydrallmania distans Nutting, 1899 
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   Selaginopsis triserialis Mereschkowsky, 
1878 

   Sertularella sp  

  Tubulariidae Ectopleura marina  

Ctenophora   Ctenophora  

Platyhelminthes   Polycladida  

 Tubellaria Stylochidae Kaburakia excelsa Bock, 1925 

  Leptoplanidae Leptoplanidae  

Nemertina   Nemertina  

 Anopla Carinomidae Carinoma mutabilis Griffin, 1898 

  Lineidae Cerebratulus sp  

   Lineidae  

   Micrura sp  

  Tubulanidae Tubulanus cingulatus (Coe, 1904) 

   Tubulanus pellucidus  

   Tubulanus polymorphus Renier, 1804 

   Tubulanus sp  

   Tubulanus sp A  

 Enopla  Hoplonemertea  

   Nipponnemertes pacificus  

  Amphiporidae Amphiporus sp  

   Zygonemertes virescens  

  Prosorhochmidae Oerstedia dorsalis (Abildgaard, 
1806) 

   Tetrastemma sp  

   Tetrastemma nigrifrons  

Annelida Hirudinea  Hirudinea  

Appendix H.  Continued.
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 Oligochaeta  Oligochaeta  

 Polychaeta Acrocirridae Macrochaeta pege  

  Ampharetidae Amage anops (Johnson, 1901) 

   Ampharete acutifrons (Grube, 1860) 

   Ampharete cf crassiseta  

   Ampharete finmarchica  

   Ampharete labrops Hartman, 1961 

   Ampharete sp  

   Ampharetidae  

   Amphicteis scaphobranchiata Moore, 1906 

   Anobothrus gracilis (Malmgren, 
1866) 

   Asabellides lineata (Berkeley & 
Berkeley, 1943) 

   Asabellides sibirica  

   Melinna oculata Hartman, 1969 

   Schistocomus hiltoni Chamberlin, 1919

  Apistobranchidae Apistobranchus ornatus Hartman, 1965 

  Capitellidae Barantolla nr americana  

   Capitella capitata hyperspecies  

   Capitellidae  

   Decamastus gracilis Hartman, 1963 

   Heteromastus filiformis (Claparède, 1864)

   Heteromastus filobranchus Berkeley & 
Berkeley, 1932 

   Mediomastus ambiseta (Hartman, 1947) 

   Mediomastus californiensis Hartman, 1944 

Appendix H.  Continued.
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   Mediomastus sp  

   Notomastus latericeus M. Sars, 1851 

   Notomastus tenuis Moore, 1909 

  Chaetopteridae Mesochaetopterus sp  

   Mesochaetopterus taylori  

   Phyllochaetopterus claparedii  

   Phyllochaetopterus prolifica Potts, 1914 

   Spiochaetopterus costarum (Claparède, 1870)

  Chrysopetalidae Paleanotus bellis (Johnson, 1897) 

  Cirratulidae Aphelochaeta monilaris (Hartman, 1960) 

   Aphelochaeta sp  

   Aphelochaeta sp N1  

   Aphelochaeta sp N4  

   Caulleriella pacifica  

   Chaetozone acuta  

   Chaetozone nr setosa  

   Chaetozone sp  

   Chaetozone sp N2  

   Cirratulidae  

   Cirratulus robustus  

   Cirratulus sp  

   Cirratulus spectabilis  

   Monticellina sp N1  

  Cossuridae Cossura bansei  

   Cossura pygodactylata Jones, 1956 

   Cossura sp  

Appendix H.  Continued.
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  Dorvilleidae Dorvillea pseudorubrovittata  

   Dorvillea rudolphi (Delle Chiaje, 
1828) 

   Parougia caeca (Webster & 
Benedict, 1884) 

   Protodorvillea gracilis (Hartman, 1938) 

  Flabelligeridae Brada sachalina Annenkova, 1922

   Brada villosa (Rathke, 1843) 

   Flabelligera affinis  

   Flabelligeridae  

   Pherusa plumosa  

  Glyceridae Glycera americana Leidy, 1855 

   Glycera nana Johnson, 1901 

   Glycera sp  

   Glyceridae  

  Goniadidae Glycinde armigera Moore, 1911 

   Glycinde polygnatha  

   Glycinde sp  

   Goniada brunnea Treadwell, 1906 

   Goniada maculata Ørsted, 1843 

   Goniada sp  

   Goniadidae  

  Hesionidae Gyptis sp  

   Hesionidae  

   Heteropodarke heteromorpha Hartmann-
Schröder, 1962 

   Microphthalmus sczelkowii  
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   Microphthalmus sp  

   Micropodarke dubia (Hessle, 1925) 

   Podarke pugettensis Johnson, 1901 

   Podarkeopsis glabrus  

  Lumbrineridae Eranno bicirrata (Treadwell, 1922)

   Lumbrineridae  

   Lumbrineris californiensis Hartman, 1944 

   Lumbrineris cruzensis Hartman, 1944 

   Lumbrineris limicola Hartman, 1944 

   Lumbrineris sp  

   Ninoe gemmea  

   Scoletoma luti  

  Magelonidae Magelona longicornis Johnson, 1901 

   Magelona sp  

  Maldanidae Asychis nr biceps  

   Axiothella rubrocincta (Johnson, 1901) 

   Chirimia similis  

   Clymenura gracilis Hartman, 1969 

   Euclymene cf zonalis  

   Euclymeninae  

   Isocirrus longiceps (Moore, 1923) 

   Maldane glebifex  

   Maldanidae  

   Microclymene caudata  

   Nicomache lumbricalis (Fabricius, 1780) 

   Nicomache personata Johnson, 1901 
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   Nicomachinae  

   Petaloproctus sp  

   Praxillella gracilis (M. Sars, 1861) 

   Praxillella pacifica E. Berkeley, 1929

   Praxillella sp  

   Rhodine bitorquata Moore, 1923 

  Nephtyidae Nephtys caeca (Fabricius) 

   Nephtys caecoides Hartman, 1938 

   Nephtys cornuta Berkeley & 
Berkeley, 1945 

   Nephtys ferruginea Hartman, 1940 

   Nephtys punctata Hartman, 1938 

   Nephtys sp  

  Nereididae Neanthes limnicola  

   Nereididae  

   Nereis procera Ehlers, 1868 

   Nereis sp  

   Nereis zonata  

   Platynereis bicanaliculata (Baird, 1863) 

  Oenonidae Drilonereis falcata Moore, 1911 

   Drilonereis longa Webster 

   Notocirrus californiensis Hartman, 1944 

  Onuphidae Diopatra ornata Moore, 1911 

   Diopatra sp  

   Onuphidae  

   Onuphis elegans (Johnson, 1901) 
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   Onuphis geophiliformis (Moore, 1903) 

   Onuphis iridescens (Johnson, 1901) 

   Onuphis sp  

  Opheliidae Armandia brevis (Moore, 1906) 

   Ophelia limacina  

   Ophelina acuminata Ørsted, 1843 

   Travisia brevis Moore, 1923 

  Orbiniidae Leitoscoloplos pugettensis (Pettibone, 1957) 

   Leitoscoloplos sp  

   Naineris quadricuspida (Fabricius) 

   Orbiniidae Hartman, 1942 

   Phylo felix Kinberg, 1866 

   Scoloplos acmeceps Chamberlin, 1919

   Scoloplos armiger (Muller) 

   Scoloplos sp  

  Oweniidae Galathowenia oculata  

   Myriochele heeri Malmgren, 1867 

   Owenia fusiformis Delle Chiaje, 
1841 

  Paraonidae Aricidea (Acmira) catherinae Laubier, 1967 

   Aricidea (Acmira) lopezi Berkeley & 
Berkeley, 1956 

   Aricidea (Allia) ramosa  

   Aricidea sp  

   Cirrophorus branchiatus Ehlers, 1908 

   Levinsenia gracilis (Tauber, 1879) 

   Levinsenia oculata (Hartman, 1957) 
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   Paradoneis lyra (Southern, 1914) 

  Pectinaridae 
(Amphictenidae) 

Pectinaria granulata  

   Pectinaria californiensis Hartman, 1941 

   Pectinaria sp  

  Pholoidae Pholoides aspera  

  Phyllodocidae Eteone leptotes Blake, 1992 

   Eteone pacifica  

   Eteone sp  

   Eteone spilotus  

   Eulalia californiensis (Hartman, 1936) 

   Eumida longicornuta (Moore, 1906) 

   Phyllodoce (Anaitides) 
cuspidata 

Mccammon & 
Montagne, 1979 

   Phyllodoce (Anaitides) 
groenlandica 

Oersted 

   Phyllodoce (Anaitides) 
longipes 

Kinberg 

   Phyllodoce (Aponaitides) 
hartmanae 

 

   Phyllodoce sp  

   Pterocirrus montereyensis (Hartman, 1936) 

  Pilargidae Parandalia fauveli (Berkeley & 
Berkeley, 1941) 

   Pilargis maculata  

   Sigambra bassi (Hartman) 

  Polynoidae Gattyana ciliata Moore, 1902 

   Gattyana cirrosa (Malmgren, 
1865) 
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   Gattyana treadwelli Pettibone, 1949 

   Grubeopolynoe tuta (Grube, 1855) 

   Harmothoe imbricata (Linnaeus, 1767) 

   Harmothoe sp  

   Harmothoinae  

   Hesperonoe laevis Hartman, 1961 

   Lepidasthenia berkeleyae Pettibone, 1948 

   Lepidonotus squamatus (Linnaeus, 1767) 

   Malmgreniella bansei Pettibone, 1993 

   Malmgreniella liei Pettibone, 1993 

   Malmgreniella sp  

   Polynoidae Malmgren, 1867 

   Tenonia priops (Hartman, 1961) 

  Sabellariidae Idanthyrsus saxicavus  

   Neosabellaria cementarium (Moore, 1906) 

  Sabellidae Chone duneri  

   Chone magna  

   Chone sp  

   Demonax rugosus (Moore, 1904) 

   Demonax sp  

   Euchone incolor Hartman, 1965 

   Euchone limnicola Reish, 1960 

   Eudistylia catherinae  

   Eudistylia sp  

   Laonome kroeyeri Malmgren, 1866 

   Manayunkia aestuarina  
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   Megalomma splendida (Moore, 1905) 

   Myxicola infundibulum (Renier) 

   Potamilla sp  

   Sabellidae Malmgren, 1867 

  Scalibregmidae Asclerocheilus beringianus  

   Scalibregma inflatum Rathke, 1843 

  Sigalionidae Pholoe minuta (Fabricius) 

   Pholoe sp  

   Pholoe sp N1  

   Sthenelais berkeleyi Pettibone, 1971 

   Sthenelais fusca Johnson, 1897 

   Sthenelais tertiaglabra Moore, 1910 

  Sphaerodoridae Sphaerodoropsis sphaerulifer (Moore, 1909) 

   Sphaerodorum papillifer Moore, 1909 

  Spionidae Boccardia pugettensis Blake, 1979 

   Boccardiella hamata (Webster, 1879) 

   Boccardiella sp  

   Dipolydora cardalia  

   Dipolydora caulleryi (Mesnil, 1897) 

   Dipolydora socialis (Schmarda, 1861)

   Laonice cirrata (M. Sars, 1851) 

   Laonice pugettensis  

   Laonice sp  

   Paraprionospio pinnata (Ehlers, 1901) 

   Polydora cornuta Bosc, 1802 

   Polydora limicola Annenkova, 1934
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   Polydora sp  

   Prionospio (Minuspio) lighti Maciolek, 1985 

   Prionospio (Minuspio) 
multibranchiata 

E. Berkeley, 1927

   Prionospio jubata  

   Prionospio sp  

   Prionospio steenstrupi Malmgren 

   Pseudopolydora kempi  

   Pygospio elegans  

   Rhynchospio glutaea  

   Spio filicornis (O. F. Müller, 
1766) 

   Spionidae  

   Spiophanes berkeleyorum Pettibone, 1962 

   Spiophanes bombyx (Claparède, 1870)

   Spiophanes sp  

   Streblospio benedicti Webster, 1879 

  Sternaspidae Sternaspis scutata  

  Syllidae Autolytus verrilli  

   Eusyllis blomstrandi  

   Eusyllis habei Imajima, 1966 

   Exogone dwisula Kudenov & 
Harris, 1995 

   Exogone lourei  

   Exogone molesta  

   Exogone sp  

   Odontosyllis phosphorea Moore, 1909 
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   Pionosyllis sp  

   Proceraea cornuta  

   Sphaerosyllis californiensis Hartman, 1966 

   Sphaerosyllis ranunculus Kudenov & 
Harris, 1995 

   Sphaerosyllis sp N1  

   Syllidae  

   Syllis (Ehlersia) heterochaeta Moore, 1909 

   Syllis (Ehlersia) hyperioni Dorsey & 
Phillips, 1987 

   Syllis (Typosyllis) harti  

  Terebellidae Amphitrite edwardsi  

   Amphitrite robusta Johnson, 1901 

   Amphitrite sp  

   Artacama coniferi Moore, 1905 

   Lanassa nordenskioldi  

   Lanassa sp  

   Lanassa venusta  

   Pista bansei  

   Pista brevibranchiata  

   Pista elongata Moore, 1909 

   Pista sp  

   Pista wui  

   Polycirrinae  

   Polycirrus californicus Moore, 1909 

   Polycirrus sp  

   Polycirrus sp I sensu Banse  
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1980 

   Polycirrus sp III sensu Banse 
1980 

 

   Polycirrus sp V sensu Banse 
1980 

 

   Proclea graffii  

   Scionella japonica Moore, 1903 

   Streblosoma bairdi (Malmgren, 
1866) 

   Streblosoma sp  

   Terebellidae  

  Trichobranchidae Terebellides californica Williams, 1984 

   Terebellides reishi Williams, 1984 

   Terebellides sp  

  Trochochaetidae Trochochaeta multisetosa (Ørsted, 1844) 

  Capitellidae Notomastus lineatus Claparède, 1870 

Mollusca Gastropoda  Gastropoda Cuvier, 1797 

   Nudibranchia Cuvier, 1817 

   Olea hansineensis Agersborg, 1923 

   Scaphandridae  

  Acteonidae Rictaxis punctocaelatus (Carpenter, 1864)

  Aglajidae Aglaja ocelligera (Bergh, 1893) 

  Aglajidae Melanochlamys diomedea (Bergh, 1893) 

  Atyidae Haminoea vesicula Gray, 1840 

  Calyptraeidae Crepipatella dorsata (Broderip, 1834) 

  Cephalaspidea Cephalaspidea P. Fischer, 1883 

  Cerithiidae Lirobittium sp  
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  Columbellidae Alia carinata (Hinds, 1844) 

   Astyris gausapata  

  Corambidae Corambe pacifica Macfarland and 
O'donoghue, 
1929 

   Doridella steinbergae (Lance, 1962) 

  Cylichnidae Acteocina culcitella (Gould, 1853) 

   Acteocina harpa (Dall, 1871) 

   Cylichna attonsa Carpenter, 1865 

   Scaphander sp  

  Diaphanidae Diaphana sp  

  Epitoniidae Epitonium sawinae (Dall, 1903) 

  Eulimidae Balcis sp  

  Flabellinidae Flabellina sp  

  Gastropteridae Gastropteron pacificum Bergh, 1893 

  Lacunidae Lacuna sp  

   Lacuna vincta (Montagu, 1803) 

  Littorinidae Littorina sp  

  Nassariidae Nassarius mendicus (Gould, 1849) 

  Naticidae Cryptonatica affinis  

   Euspira pallida  

   Euspira sp  

  Olividae Olivella baetica Carpenter, 1864 

  Philinidae Philine sp  

  Pyramidellidae Cyclostremella concordia  

   Odostomia sp  

   Turbonilla sp  
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  Rissoidae Alvania compacta Carpenter, 1864 

   Alvania sp 1  

  Skeneopsidae Skeneopsis alaskana Dall, 1919 

  Trichotropididae Trichotropis cancellata Hinds, 1843 

  Tritoniidae Tritonia cf diomedea Bergh, 1894 

  Trochidae Lirularia lirulata  

   Margarites pupillus (Gould, 1849) 

  Turridae Kurtzia arteaga (Dall & Bartsch, 
1910) 

   Kurtziella crebricostata  

 Polyplacophora Lepidopleuridae Leptochiton cf nexus Carpenter, 1864 

   Leptochiton rugatus  

 Aplacophora Chaetodermatidae Chaetoderma sp  

 Bivalvia  Bivalvia Linnaeus, 1758 

  Cardiidae Clinocardium blandum (Gould, 1850) 

   Clinocardium nuttallii (Conrad, 1837) 

   Clinocardium sp  

   Nemocardium centifilosum (Carpenter, 1864)

  Hiatellidae Hiatella arctica (Linnaeus, 1767) 

   Panomya ampla Dall, 1894 

   Saxicavella pacifica Dall, 1916 

  Lasaeidae Rochefortia cf coani  

  Lucinidae Lucinoma annulatum (Reeve, 1850) 

   Parvilucina tenuisculpta (Carpenter, 1864)

  Lyonsiidae Lyonsia californica Conrad, 1837 

  Mactridae Mactromeris polynyma (Stimpson, 1860) 
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  Montacutidae Kellia suborbicularis (Montagu, 1803) 

   Rochefortia tumida  

  Myidae Cryptomya californica (Conrad, 1837) 

   Mya arenaria Linnaeus, 1758 

  Mytilidae Modiolus rectus (Conrad, 1837) 

   Modiolus sp  

   Musculus discors (Linnaeus, 1767) 

   Mytilidae  

   Mytilus sp  

   Solamen columbiana  

  Nuculanidae Ennucula tenuis  

  Nuculidae Acila castrensis (Hinds, 1843) 

  Pandoridae Pandora filosa (Carpenter, 1864)

  Sareptidae Yoldia hyperborea Torell, 1859 

   Yoldia seminuda Dall, 1871 

   Yoldia sp  

   Yoldia thraciaeformis (Storer, 1838) 

  Semelidae Semele rubropicta Dall, 1871 

  Solenidae Solen sicarius Gould, 1850 

  Tellinidae Macoma carlottensis Whiteaves, 1880 

   Macoma elimata Dunnill & Coon, 
1968 

   Macoma inquinata (Deshayes, 1855)

   Macoma moesta (Deshayes, 1855)

   Macoma nasuta (Conrad, 1837) 

   Macoma obliqua (Sowerby, 1817) 
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   Macoma sp  

   Macoma yoldiformis Carpenter, 1864 

   Tellina modesta (Carpenter, 1864)

   Tellina nuculoides (Reeve, 1854) 

   Tellina sp  

  Teredinidae Bankia setacea (Tryon, 1863) 

  Thyasiridae Adontorhina cyclia Berry, 1947 

   Adontorhina sphaericosa Scott, 1986 

   Axinopsida serricata (Carpenter, 1864)

   Thyasira flexuosa (Montagu, 1803) 

  Veneridae Compsomyax subdiaphana (Carpenter, 1864)

   Nutricola lordi (Baird, 1863) 

   Protothaca staminea (Conrad, 1837) 

   Saxidomus giganteus (Deshayes, 1839)

 Scaphopoda Pulsellidae Pulsellum salishorum E. Marshall, 1980

Arthropoda Pycnogonida Nymphonidae Nymphon sp  

  Phoxichilidiidae Phoxichilidium femoratum  

 Cirripedia Balanidae Balanus sp  

 Copepoda  Calanoida Mauchline, 1988 

   Calanus pacificus Brodsky, 1948 

   Cyclopoida  

   Harpacticoida  

 Malacostraca  Euphausia pacifica Hansen, 1911 

   Euphausia sp  

   Euphausiacea furcilia  

   Mysidacea  
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   Pacifoculodes sp  

   Pacifoculodes zernovi  

  Aeginellidae Tritella pilimana Mayer, 1890 

  Alpheidae Eualus cf pusiolus  

   Eualus stimpsoni  

  Ampeliscidae Ampelisca cristata Holmes, 1908 

   Ampelisca hancocki J. L. Barnard, 
1954 

   Ampelisca lobata Holmes, 1908 

   Ampelisca macrocephala Liljeborg 

   Ampelisca pacifica Holmes, 1908 

   Ampelisca sp  

   Ampelisca unsocalae J. L. Barnard, 
1960 

   Byblis millsi Dickinson, 1983 

  Ampithoidae Ampithoe lacertosa Bate, 1858 

  Anthuridae Silophasma geminata  

  Aoridae Aoroides columbiae Walker, 1898 

   Aoroides inermis Conlan & 
Bousfield, 1982 

   Aoroides intermedius Conlan and 
Bousfield, 1982 

   Aoroides sp  

   Aoroides spinosus Conlan and 
Bousfield, 1982 

  Argissidae Argissa hamatipes (Norman, 1869) 

  Axiidae Acanthaxius (Axiopsis) 
spinulicauda 

 

   Axiidae Huxley, 1879 
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   Axiopsis spinulicauda (Rathbun, 1902) 

  Bopyridae cf Hemiarthrus abdominalis (Kroyer, 1840) 

  Callianassidae Neotrypaea californiensis (Dana, 1854) 

   Neotrypaea sp  

  Cancridae Cancer gracilis Dana, 1852 

  Caprellidae Caprella laeviuscula  

   Caprella mendax Mayer, 1903 

   Caprella sp  

   Metacaprella anomala  

   Metacaprella kennerlyi (Stimpson, 1864) 

  Corophiidae Corophiidae  

   Corophium (Laticorophium) 
baconi 

 

   Corophium (Monocorophium) 
acherusicum 

 

  Crangonidae Crangon alaskensis Lockington, 1877

   Crangonidae Haworth, 1825 

   Mesocrangon munitella (Walker, 1898) 

  Dexaminidae Guernea reduncans (J. L. Barnard, 
1958) 

  Diastylidae Diastylis bidentata  

   Diastylis pellucida Hart, 1930 

   Diastylis santamariensis Watling & 
Mccann, 1997 

   Diastylis sentosa  

   Diastylis sp  

   Leptostylis cf villosa  

   Leptostylis sp  

Appendix H.  Continued.



Page 281 

Phylum Class Family Taxon Authorship 

  Eusiridae Eusirus columbianus  

   Rhachotropis barnardi  

   Rhachotropis sp  

  Grapsidae Hemigrapsus oregonensis (Dana, 1851) 

  Hippolytidae Hippolytidae Bate, 1888 

  Hyperiidae Hyperiidae  

  Isaeidae Gammaropsis thompsoni (Walker, 1898) 

   Photis brevipes Shoemaker, 1942

   Photis parvidons Conlan, 1983 

   Photis sp  

   Protomedeia prudens J. L. Barnard, 
1966 

  Ischyroceridae Ischyrocerus anguipes group  

   Ischyrocerus sp  

  Lampropidae Lamprops sp  

  Leuconiidae Eudorella pacifica Hart, 1930 

   Eudorellopsis integra  

   Eudorellopsis longirostris Given, 1961 

   Leucon subnasica Given, 1961 

  Limnoriidae Limnoria lignorum (Rathke, 1799) 

  Lysianassidae Anonyx cf lilljeborgi  

   Hippomedon sp  

   Lepidepecreum gurjanovae Hurley, 1963 

   Orchomene decipiens (Hurley, 1963) 

   Orchomene obtusa Sars, 1895 

   Orchomene sp  
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   Pachynus barnardi Hurley, 1963 

   Pachynus cf barnardi Hurley, 1963 

  Melitidae Anisogammarus pugettensis Dana, 1853 

   Desdimelita desdichada (J. L. Barnard, 
1962) 

  Munnidae Munna ubiquita Menzies, 1952 

  Mysidae Pseudomma berkeleyi W. Tattersall, 
1932 

   Pseudomma sp  

  Nannastacidae Campylaspis canaliculata Zimmer, 1936 

   Campylaspis rubromaculata Lie, 1971 

  Nebaliidae Nebalia cf pugettensis  

  Oedicerotidae Americhelidium shoemakeri  

   Bathymedon pumilus J. L. Barnard, 
1962 

   Bathymedon sp  

   Deflexilodes sp  

   Westwoodilla caecula Bate, 1856 

  Paguridae Paguridae Latreille, 1803 

  Paguridae Pagurus armatus (Dana, 1851) 

  Pandalidae Pandalus tridens Rathbun, 1902 

  Paratanaidae Leptochelia dubia (Krøyer, 1842) 

  Phoxocephalidae Eyakia robustus (Holmes, 1908) 

   Heterophoxus affinis (Holmes, 1908) 

   Paraphoxus cf gracilis  

   Paraphoxus sp  

   Rhepoxynius barnardi  
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   Rhepoxynius boreovariatus  

  Pinnotheridae Pinnixa occidentalis Rathbun, 1893 

   Pinnixa sp  

   Pinnotheridae  

   Scleroplax granulata Rathbun, 1893 

  Pleustidae Parapleustinae  

  Podoceridae Dulichia sp  

   Dyopedos arcticus Murdoch, 1885 

   Dyopedos sp  

  Pontogeneiidae Accedomoera vagor J. L. Barnard, 
1969 

  Stenothoidae Metopa cf dawsoni  

   Stenothoidae Chevreux 

   Stenothoides sp Chevreux, 1900 

  Synopiidae Tiron sp  

  Tanaidae Zeuxo normani (Richardson, 
1905) 

  Upogebiidae Upogebiidae Borradaile, 1903 

 Ostracoda Cylindroleberididae Bathyleberis sp  

  Philomedidae Euphilomedes carcharodonta (Smith, 1952) 

   Euphilomedes producta Poulsen, 1962 

   Euphilomedes sp  

  Rutidermatidae Rutiderma cf lomae  

 Insecta Tipulinae Ctenophora Meigen, 1803 

Sipuncula   Sipuncula  

 Sipunculidea Golfingiidae Thysanocardia nigra (Ikeda, 1904) 

   Thysanocardia sp  
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Echiura Echiurida Bonelliidae Bonelliidae  

  Echiridae Echiurus echiurus alaskanus  

Priapulida  Priapulidae Priapulus caudatus  

Phoronida   Phoronida  

Phorona  Phoronidae Phoronis sp  

Phorona   Phoronopsis harmeri  

Bryozoa Gymnolaemata Alcyonidiidae Alcyonidium sp  

  Hippothoidae Celleporella hyalina (Linnaeus, 1767) 

  Vesiculariidae Bowerbankia gracilis Leidy, 1855 

Entoprocta  Barentsiidae Barentsia benedeni (Foettinger, 1887)

   Barentsia gracilis  

  Pedicellinidae Myosoma spinosa  

Brachiopoda Articulata Laqueidae Terebratalia transversa (G. B. Sowerby 
I., 1846) 

Echinodermata Asteroidea  Asteroidea  

  Solasteridae Crossaster papposus (Linnaeus, 1767) 

 Echinoidea Schizasteridae Brisaster latifrons (A. Agassiz, 
1898) 

 Holothuroidea  Dendrochirotida Brandt, 1835 

  Cucumariidae Cucumaria sp  

   Thyone benti Deichmann, 1937

  Mopadiidae Molpadia intermedia (Ludwig, 1894) 

  Phyllophoridae Pentamera lissoplaca (H. L. Clark, 
1924) 

   Pentamera populifera (Stimpson, 1857) 

   Pentamera sp  

   Phyllophoridae Oestergren, 1907 
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  Stichopodidae Parastichopus californicus (Stimpson, 1857) 

  Synaptidae Leptosynapta transgressor Heding, 1928 

 Ophiuroidea  Ophiurida Muller & 
Troschel, 1940 

  Amphiuridae Amphiodia (Amphispina) 
urtica/periercta 

 

   Amphiodia sp  

   Amphipholis squamata (Delle Chiaje, 
1828) 

   Amphiuridae Ljungman, 1867 

  Ophiuridae Ophiura lütkeni (Lyman, 1860) 

Hemichordata Enteropneusta  Enteropneusta  

Chaetognatha   Chaetognatha  

 Sagittoidea Sagittidae Sagitta sp  

Chordata Ascidiacea Molgulidae Molgula pugettensis Herdman, 1898 

  Styelidae Styela gibbsii (Stimpson, 1864) 

   Styela sp  
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Appendix J 
Triad data - Results of selected toxicity, chemistry, and infaunal analysis for all 

1999 southern Puget Sound stations. 
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